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ABSTRACT 

System level design of an embedded computing system involves a multi-step 

process to refine the system from an abstract specification to an actual implementation 

by defining and modeling the system at various levels of abstraction. System level 

design supports evaluating and optimizing the system early in design exploration. 

Embedded computing systems may consist of multiple processing elements, 

memories, I/O devices, sensors, and actors. The selection of processing elements 

includes instruction-set processors and custom hardware units, such as application 

specific integrated circuit (ASIC) and field programmable gate array (FPGA). 

Real-time operating systems (RTOS) have been used in embedded systems as an 

industry standard for years and can offer embedded systems the characteristics such as 

concurrency and time constraints. Some of the existing system level design languages, 

such as SpecC, provide the capability to model an embedded system including an 

RTOS for a single processor. However, there is a need to develop a distributed RTOS 

modeling mechanism as part of the system level design methodology due to the 

increasing number of processing elements in systems and to embedded platforms 

having multiple processors. A distributed RTOS (DRTOS) provides services such as 

multiprocessor tasks scheduling, interprocess communication, synchronization, and 

distributed mutual exclusion, etc. 

In this thesis, we develop a DRTOS model as the extension of the existing 

SpecC single RTOS model to provide basic functionalities of a DRTOS 

implementation, and present the refinement methodology for using our DRTOS model 

during system level synthesis. The DRTOS model and refinement process are 

demonstrated in the SpecC SCE environment. The capabilities and limitations of the 

DRTOS modeling approach are presented. 
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1. INTRODUCTION 

1.1 Motivation 

Today, embedded system products are widely used in our everyday lives. 

Embedded systems can be found in aviation, marine, and automotive navigation devices. 

Those devices require high accuracy, high quality, high reliability, and high stability. 

Consumer handheld devices represent another type of product relying on embedded 

systems that demand multi-functionality, easy of use, energy efficiency, and low-cost. 

In general, an embedded system consists of a variety of different processing 

elements, storage units, I/O devices, sensors, actors, etc. The selection of processing 

elements includes instruction-set processors, application-specific integrated circuits 

(ASICs), and reconfigurable hardware devices such as field-programmable gate arrays 

(FPGAs). Advances in processor technology and architecture have led to a 

near-exponential increase in processing element speed making embedded systems more 

and more powerful. However, the complexity of embedded systems has increased more 

rapidly than the performance of individual processing elements. Today's applications 

often require considerably more computational power than a single processor can offer. 

Therefore, utilizing parallel or distributed systems architecture combined with multiple 

processing elements has often become necessary. Additionally, distributed operating 

systems are becoming an important software component in embedded systems used to 

provide the high-level procedures for dynamically managing the tasks and resources in a 

multiprocessor environment. The use of multiple processing elements and distributed 

operating systems in embedded systems permits the execution of application tasks in a 

true multi-tasking manner, which can dramatically improve the performance of the 

embedded systems. 

Unfortunately, these advancements also significantly increase the complexity of 

system architecture and design for embedded systems. In order to handle the 

extraordinary competition present in the real industrial world today, designers are driven 
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to shorten their development cycle and place their products on the market as quickly as 

possible. Thus, a new design method is needed to assist designers in producing complex 

multiprocessor-based embedded systems more quickly and with less cost. 

1.2 Statement of the Problem 

In multiprocessor embedded systems design, system functionality and timing are 

the two main aspects of system constraint. Many design decisions such as tasks and 

resources allocation, selection of task scheduling algorithms, memory requirements, etc, 

may affect these constraints. Overall analysis of such critical system level effects is a 

major challenge. In order to study these effects before any implementation has been done, 

designers need a system-level model capable of capturing system runtime behavior on a 

multiprocessor platform. 

System level design is a multi-stage process for refining a system from an 

abstract specification to an actual implementation. In recent years, system level design 

languages and tools have been introduced, allowing designers to define and model 

systems at various levels of abstraction [1], The main goal of system level design 

languages (SLDL) is to help designers in managing high complexity of embedded 

systems during early design exploration. 

At their earlier implementations, system level design languages lacked support 

for modeling real-time operating systems (RTOSs). After considerable research work 

focused on this area, RTOS modeling is being increasingly supported in system level 

design. In [2], Gerstlauer, et al, introduced their RTOS model built on top of the existing 

SLDL - SpecC, which supports all of the key concepts in the RTOS kernels, such as task 

management, preemption, task synchronization, and interrupt handling. In [3], a 

transaction-level model (TLM) with RTOS scheduling support is developed, which 

allows designers to select the correct scheduling algorithm at the higher levels of 

abstraction so that the system performance can be improved. However, these models 

currently only support modeling for a single RTOS kernel and cannot be used in 
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multiprocessor systems. 

1.3 Objective of the Research 

In order to fully facilitate system level design approaches in embedded systems 

with multiple processing elements, a new system level OS model must be developed to 

capture distributed real-time operating system (DRTOS) runtime behavior. This thesis 

addresses this design issue by introducing a highly abstract DRTOS model into system 

level design. Our DRTOS model is the extension of the RTOS model introduced in [2] 

including a global synchronizer and a global scheduler. We named it as ERTOS-SS, for 

extended RTOS with global scheduling and synchronization. The ERTOS-SS DRTOS is 

written on top of the SpecC language and can be integrated into existing system level 

design flows to accurately reflect distributed real-time operating system behavior during 

system level synthesis. 

1.4 Contribution 

The following is a summary of the contributions of this research project. 

• Analysis and simulation of the existing SpecC RTOS model. 

• Demonstration of the OS refinement process with insertion of SpecC RTOS 

model into a system model using the SCE environment. 

• Modeling and refinement methodology of the abstract ERTOS-SS DRTOS 

model. 

• The ERTOS-SS DRTOS model implementation of an example multitask 

multiprocessor system as a case study. 

1.5 Thesis Outline 

The thesis is organized into 7 chapters. The introduction in chapter 1 provides 

motivation and the statement of problem. The objectives and the contributions of this 
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research work are also described in this chapter. 

Chapter 2 provides background materials of operating systems, including the 

main components and features of real-time operating systems and distributed real-time 

operating systems. This chapter also presents an briefly overview of system level design 

languages, followed by a description of the detailed features of the SpecC language, the 

system level design language used in this research work. 

Chapter 3 first introduces the SCE system level design environment used in this 

research work. Then a brief analysis of the existing SpecC RTOS model and a 

demonstration of the OS refinement process in the SCE environment are presented. 

In Chapter 4, the ERTOS-SS DRTOS modeling and refinement methodology is 

presented. It starts with a summary of the DRTOS services which must be implemented 

in the ERTOS-SS DRTOS model. Then the implementation details of the ERTOS-SS 

DRTOS model and the ERTOS-SS DRTOS refinement methodology are discussed. 

A case study of using the abstract ERTOS-SS DRTOS model is demonstrated in 

Chapter 5. The simulation results of experiments are also shown in this chapter. 

Chapter 6 summarizes related work on system level design methodologies for 

multiprocessor embedded systems or Multiprocessor System-on-Chip (MPSoC). 

Finally, a conclusion and some recommended topics for future work are presented 

in Chapter 7. 
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2. BACKGROUND 

In this chapter, an introduction of operating systems is given in section 2.1.1, 

followed by the detailed discussion on real-time operating systems and distributed 

real-time operating systems in section 2.1.2 and 2.1.3, respectively. In section 2.2.1, a 

brief overview of system level design languages is presented. Then one of the most 

prominent system level design languages, SpecC [4], developed at the University of 

California, Irvine, is introduced in section 2.2.2. 

2.1 Operating Systems 

2.1.1 Overview 

Operating systems provide a layer of abstraction between the user and the bare 

machine. Users and applications do not see the hardware directly, but view it through 

operating systems. There are many types of operating systems, and their complexity 

varies depending upon what types of functions are provided, and for what the system is 

being used. There is no universal definition of what an operating system consists of. 

Normally operating systems can provide the following two basic functions. 

Perform Resource Management 

This includes: 

• Time management (CPU and disk scheduling) 

• Space management (main and secondary storages) 

• Process synchronization and deadlock handling 

• Accounting and status information 

Provide User Friendliness 

This includes: 

• Execution environment 

• Error detection and handling 
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• Protection and security 

• Fault tolerance and failure recovery 

The categories of operating systems are also complex. Depending on the number 

of tasks that can be performed simultaneously and the number of simultaneous users that 

can be supported, operating systems can be categorized as single-user single-task, 

single-user multi-task, or multi-user multi-task. Table 2.1 below shows some examples. 

Table 2.1: Examples of different numbers of users and tasks 

OS Users Tasks Processors 

MS DOS S S 1 

Windows 3x S S 1 

Amiga DOS S M 1 

Windows 9x S M 1 

hline MTS M M 1 

Windows NT/2000/XP M M N 

UNIX M M N 

VMS M M N 

Depending on the various design approaches, operating systems styles have been 

classified in different catalogs as: the monolithic approach, the layered approach, the 

kernel-based approach, and the virtual machine approach. Table 2.2 below lists some 

examples of these different approaches. 

Table 2.2: Examples of different design approaches 

Design Approach OS 

Monolithic Approach MS-DOS, MVS 

Layered Approach THE, MULTICS 

Kernel-based Approach Linux, Unix, Windows 2000 

Virtual Machine Approach IBM VM/370 

Early operating systems designers focused on the stand-alone computer with a 

single processor. After decades of development in computer architecture and increasing 

complexities in computer applications, advanced operating systems have recently 
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become a mainstream technology. Generally, advanced operating systems can be 

classified as architecture driven, application driven, and hybrids of these two approaches. 

Several examples of advanced operating systems are shown in Figure 2.1. 

i 

Multiprocessor OS OS for SensorNets Database OS 

Distributed OS OS for PDA Real-time OS 

Hybrids Architecture Driven Application Driven 

Advanced Operating Systems 

Figure 2.1 : Examples of advanced operating systems 

In the following two sections (2.1.2 and 2.1.3), more detailed features of real-time 

operating systems and distributed real-time operating systems will be presented, 

respectively. 

2.1.2 Real-Time Operating Systems 

Real-time operating systems (RTOS), such as VxWorks, pSoS, and QNX, are the 

operating systems used in embedded real-time systems. In order to fully understand the 

features of real-time operating systems, a brief overview of real-time systems will first be 

presented. 

Real-time systems are computing systems that have both logic and timing 

constraints. In an ordinary system, the value of the output typically determines the 

correctness of the system. But in a real-time system, time issues must be considered as 
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well. The principal responsibility of real-time systems can be summarized as that of 

producing correct results within a certain time interval - a deadline. A correct output 

produced too late or too early could often be useless or even dangerous. 

Depending on types of deadlines, a real-time system can be defined as a hard 

real-time system or a soft real-time system. As described in [5], hard real-time systems 

can be thought of as a particular subclass of real-time systems in which the lack of 

adherence to deadlines may result in catastrophic system failure. Examples of hard 

real-time systems include avionic control systems, vehicle control systems, and industrial 

automation systems, etc. On the other hand, soft real-time systems are those real-time 

systems in which the ability to meet deadlines is a high-priority requirement, but failure 

to do so does not necessarily cause system failure. Multimedia processing systems and 

internet web servers are examples of soft real-time systems. Figure 2.2 illustrates the 

difference between hard real-time systems and soft real-time systems. 

Value Deadline Value Deadline 

Time Time 

(a) Hard Deadline (b) Soft Deadline 

Figure 2.2: Hard real-time system and soft real-time system 

The main objective of real-time operating systems is to simplify the development 

process of real-time systems by providing a set of interfaces with a higher abstraction 

level than that offered by the bare hardware architecture. Modern real-time operating 

systems are based on the complementary concepts of multitasking and interprocess 
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communications. A multitasking environment allows a real-time application to be 

constructed as a set of independent tasks, each with its own thread of execution and set of 

system resources. Interprocess communication facilities allow these tasks to synchronize 

and communicate to coordinate their activities [6], This section presents an overview of 

the main components and features used in real-time operating systems. 

Tasks 

A real-time application performs a set of pre-defined actions within a certain time 

frame. Each of these actions is typically defined as a task. A real-time task can be 

classified as periodic or aperiodic depending on its arrival pattern. Tasks with regular 

arrival times are called periodic and tasks with irregular arrival times are called aperiodic. 

Each task has its own context, which contains the CPU environment and system 

resources that the task sees each time it is scheduled to run. In a real-time operating 

system, the context of a task is stored in a data structure, called the task control block 

(TCB). In a preemptive scheduling algorithm, the context of each task is stored into, or 

reloaded from, the task TCB during context switching. 

Real-time operating systems maintain the current state of each task in the system. 

The states may have different names in different operating systems, and some additional 

states may exist in some operating systems. Generally, based on [6], a task at any point of 

time can be in one of the following states: running, ready, waiting, and suspend. When 

first created, tasks enter the suspend state. Activation is required for a created task to 

enter its ready state. The ready state indicates that a task is not waiting for any resources 

other than the CPU. Depending on different scheduling algorithms, one task in the ready 

state can be executed and enter its running state. Only one task per processor can be in 

the running state at any instant of time: it is the task currently using the processor. If a 

task is blocked due to the unavailability of resources other than the CPU, it is placed in 

the waiting state. Figure 2.3 shows the task state transition in real-time operating 

systems. 
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Wait semaphore, message queue, etc 
Activate / Resume 

Create 

Suspend Ready Waiting 

Suspend Get semaphore, message queue, etc 

CPU ready 

Suspend Wait semaphore, message queue, etc 

Running 

Figure 2.3: Task state transition 

Scheduling 

Multitasking in real-time operating systems requires a scheduling algorithm to 

allocate the CPU to ready tasks. The main purpose of scheduling real-time tasks is to 

guarantee satisfaction of temporal constraints such as deadline, release time, etc. There 

are two basic types of scheduling mechanisms for real-time tasks: non-preemptive 

scheduling and preemptive scheduling [7], In non-preemptive scheduling, once a task has 

started executing, it completes its execution without interruption. The main advantage of 

non-preemptive scheduling is that it has less scheduling overhead because of less 

occurrence of context switching. However, it offers lower schedulability. Conversely, in 

preemptive scheduling, a task's execution can be preempted by higher priority tasks. At 

any point of time, the highest priority ready task is executing. Once all the higher priority 

ready tasks finish their execution, the preempted task can be resumed. Compared to 

non-preemptive scheduling, preemptive scheduling can provide a higher degree of 

schedulability by meeting deadlines of higher priority tasks first. The disadvantage of 

preemptive scheduling is that it requires higher scheduling overhead due to a greater 

level of context switching. 

Interprocess Communication 

Communication is a central component in any operating system. Co-operating 
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tasks (processes or threads) often communicate and synchronize. The execution of one 

particular task can affect another task or tasks by communication. As listed below, there 

are generally several types of interprocess communication (IPC) in real-time operating 

systems: 

i. Shared Data Structure - The most obvious way for tasks to communicate is by 

accessing shared data structures. The instances of shared data structures 

include global variables, linear buffers, ring buffers, linked lists, and pointers, 

etc. Interprocess communication using a shared data structure is shown in 

Figure 2.4. 

ii. Message Queue - Message queues allow a variable number of messages, each 

of variable length, to be queued. Tasks and interrupt service routines (ISR) 

can send messages to a message queue, and receive messages from a message 

queue. Interprocess communication using a message queue is shown in Figure 

2.5. 

iii. Signal - Signals are more appropriate for error and exception handling than as 

a general-purpose interprocess communication mechanism. Any task or ISR 

can raise a signal for a particular task. The task being signaled immediately 

suspends its current thread of execution and executes the task-specified signal 

handler routine the next time it is scheduled to run. The signal handler is 

invoked even if the task is blocked. 

iv. Others - Some other communication mechanisms may exist in different 

real-time operating systems. Pipes, which are virtual I/O devices, provide an 

alternative interface to the message queue facility that goes through the I/O 

system. Socket is a basic network interprocess communication mechanism in 

which data is send from one socket to another across the network. Remote 

procedure calls (RFC) is a facility that allows a process on one machine to 

call a procedure that is executed by another process on either the same 

machine or a remote machine. 
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Memory 

Task 1 

Access Shared 

^ Data / Access Shared 

Data 
Task n 

Task 2 

Shared Data 

Figure 2.4: Interprocess communication via a shared data structure 

Send Message 

Queue 
Receive 

Task 1 Task 2 

Message 

Queue Receive Send 

Figure 2.5: Interprocess communication via message queues 

Another use of interprocess communication mechanisms is for shared resource 

mutual exclusion and task synchronization. A shared resource is a software structure that 

can be used by more than one task to advance its execution. Any operating system that 

supports shared resources must guarantee mutual exclusion among competing tasks. 

Semaphores are the primary method for addressing the requirements of both mutual 

exclusion and task synchronization. Semaphores provide mutual exclusion by 

interlocking access to shared resources. For synchronization, semaphores coordinate a 

task's execution with external events. 

Interrupt 

Another key facility in real-time operating systems is interrupt handling. 
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Interrupts are the usual mechanism for informing a system of critical external events. For 

the fastest possible response to interrupts, many real-time operating systems use a special 

context for Interrupt service routine (ISR) outside of any other task's context. Thus 

interrupt handling involves no task context switch and ISRs can be executed immediately 

when interrupts occur. 

In this section, we first introduced real-time systems and then discussed the main 

components and features in real-time operating systems. As we have seen, real-time 

operating systems can provide efficient mechanisms and services for real-time 

scheduling and resource management. They are important components in embedded 

real-time systems design. 

2.1.3 Distributed Real-Time Operating Systems 

The demand for distributed or parallel hardware architectures in embedded 

real-time systems is due mainly to the fact that applications sometimes require more 

computational power than a single processor can offer [8], Similar to real-time operating 

system (RTOS) kernels used for years as an industry standard in uniprocessor systems, 

distributed real-time operating systems can be used in a multiprocessor environment to 

provide high-level procedures to dynamically schedule tasks and manage resources at 

run-time. 

Compared to conventional real-time operating systems for single processor 

systems, several central issues that describe almost all additional constructs in a 

distributed real-time operating system are presented in the following part of this section. 

Multiprocessor Scheduling 

The central problem in multiprocessor scheduling is to determine when and on 

which processor a given task is to be executed. This can be done either statically or 

dynamically. Static algorithms determine a priori the assignment of tasks to processors 

and the time at which each task starts execution [9], The main advantage of static 
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scheduling is that all tasks' deadlines will be guaranteed if a feasible schedule is found. 

In dynamic scheduling, on the other hand, when a new task arrives, the scheduler 

dynamically determines the feasibility of scheduling the task without jeopardizing the 

guarantees that have been provided for previously scheduled tasks [9], Compared to 

static scheduling, dynamic scheduling offers higher flexibility and is better at adapting to 

runtime changes such as aperiodic tasks. 

As described in [8], a multiprocessor scheduling procedure in distributed 

real-time operating systems can be described as having three phases: 

i. Allocation - the assignment of tasks and resources to appropriate nodes or 

processors in the system. 

ii. Scheduling - ordering the execution of tasks and network communication 

such that timing constraints are met and consistency of recourses is 

maintained. 

iii. Dispatching - executing the tasks in conformance with the scheduler's 

decisions. 

There are many multiprocessor scheduling algorithms for both static and dynamic 

scheduling. More details about these algorithms can be found in [8] and [9], 

Memory Management in Multiprocessor Systems 

Three primary types of memory systems are most commonly used in 

multiprocessor systems: 

i. Uniform Memory Access (UMA) - In UMA architectures, memory access 

times to the whole address space are equal for all processes. A common 

design technique for such systems is one in which all processors are 

connected to a bus, with a global shared memory connected to the same bus. 

ii. Non-Uniform Memory Access (NUMA) -NUMA systems also offer a single 

shared address space visible to all processors, but access times to the different 

memory regions differs for each processor. A common design technique in 

this type of system is to use processor boards with on-board memory modules 
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attached to a shared bus. 

iii. No Remote Access System (NORMA) - NORMA architectures do not offer a 

global shared address space. Each processor accesses only its own address 

space. Typically, these architectures, often referred to as clusters, consist of 

loosely-coupled independent computers connected through Local Area 

network (LAN) technologies. 

Memory management of real-time operating system kernels is usually simple and 

primitive. Typical conventional (not real-time) operating systems mechanisms such as 

virtual memory, dynamic allocation and de-allocation, are avoided in real-time operating 

systems, since these are considered to be dangerous and unreliable features. In NORMA 

architecture, each processing element manages its own local memory as a single 

processor system. In UMA and NUMA systems, distributed real-time operating systems 

are responsible for providing management for the shared memory that is visible to all 

processors. 

Interprocess Communication and Synchronization 

Generally there are two types of interprocess communication (IPC) in distributed 

RTOS: 

i. Message Passing - different processors communicate with each other by 

sending/receiving messages. This method is typically associated with 

distributed memory multiprocessors or distributed multicomputers (NORMA), 

such as in a network of workstations. 

ii. Shared Memory - different processors communicate with each other by 

reading/writing data from/to shared memories. This method is typically 

associated with tightly-coupled shared memory multiprocessors (UMA, 

NUMA). 

Distributed RTOS interprocess communication mechanisms are similar to those 

used in uniprocessor real-time operating systems in that shared data structures and 

message queues are used. The main difference is that in uniprocessor real-time operating 
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systems, shared data structures and message queues are only visible for multiple tasks 

located in a single processor. Conversely, shared memory and messages used in 

distributed operating systems can be accessed by tasks allocated to different processors. 

Distributed Mutual Exclusion 

In multiprocessor systems, when two or more tasks in different processors 

attempt to simultaneously access shared resources, distributed mutual exclusion must be 

provided by distributed real-time operating systems. Distributed mutual exclusion can be 

used to ensure the integrity of shared resources by serializing concurrent access from 

various sites. In general, there are two basic types of distributed mutual exclusion: 

assertion-based and token-based. In assertion-based distributed mutual exclusion, when a 

site tries to access a shared resource, two or more successive rounds of message 

exchanges are required among all sites to check for availability of the shared resource. 

The site can successfully enter the shared resource only if the local assertion variable is 

true. In token-based distributed mutual exclusion, each shared resource has a token that is 

used to control access to it. A site can enter the shared resource only if it exclusively 

possesses the token. 

The requirements of distributed mutual exclusion algorithms include mutual 

exclusion, freedom from deadlock, freedom from starvation, fairness, and fault tolerance. 

Many assertion-based and token-based distributed mutual exclusion algorithms can be 

found in [7], 

2.2 System Level Design Language 

2.2.1 Overview 

System level design is a multi-stage process in which the system specification is 

gradually refined from an abstract idea down to an actual implementation [2], In order to 

support different approaches in system level design, system level design languages 
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should in general have the following two essential attributes: 

First, system level design languages should support defining and modeling 

systems at various levels of abstraction. In a top-down methodology such as in SpecC 

and SystemC, a system level design begins with a highly-abstracted specification, which 

is purely functional without any implementation details. The designers then refine the 

system model to gradually reveal more details about the implementation with each step 

representing a different layer of abstraction. Second, the system model at each layer of 

abstraction can be simulated, tested, and debugged, which allows designers to validate 

the system functionality at each design stage. 

Such a model is referred to as a model of computation. SpecC refinement 

methodology has four models of computation: the specification model, the architecture 

model, the communication model, and the implementation model, each representing a 

layer of abstraction in the design hierarchy. SystemC consists of five models of 

computation that can be applied to a top-down system level design methodology. These 

five models of computation are the untimed functional model, the timed functional model, 

the transaction-level model, the behavior-level model, and the register-transfer model. 

Figure 2.6 shows the hierarchy of the models of computation in SpecC and SystemC. 

More details of each model of computation in SpecC and SystemC can be found in [4], 

[10], and [11]. 
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Figure 2.6: Models of computation in SpecC and SystemC 

Several general requirements of system level design languages are discussed in 

[12]. A system level design language can be evaluated in terms of fulfillment of these 

requirements. These requirements are listed as follows. 

. Analyzability: System level design languages should have the ability to 

analyze system models to establish their characteristics at all the levels of 

abstraction. SpecC, for example, supports such an analysis feature by 

profiling/estimation. 

. Explorability: The syntax and semantics of system level design languages 

should explicitly specify the characteristics of system models at any level of 

abstraction. This gives the designers enhanced latitude in making 

implementation decisions. SpecC, for example, has par and pipe constructs 

for modeling parallelism and pipelined executions. 

. Reflnability: The exploration tools should allow specification of design 
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decisions taken in an explicit format. This allows unambiguous refinement of 

the model using refinement tools or through manual refinement. Also, the 

modeling styles of the model to be refined and the resulting model after 

refinement should be consistent. 

. Validability: Models written in system level design languages should capable 

of validation at all the levels of abstraction. Both SpecC and SystemC allow 

validation by simulation. 

2.2.2 SpecC Language 

SpecC language is a system level design language developed at the University of 

California, Irvine. The first version of SpecC and its codesign methodology were 

introduced in late 1990s. Built on top of the ANSI-C programming language, SpecC 

language supports concepts essential for embedded systems design, including behavioral 

and structural hierarchy, concurrency, communication, synchronization, state transitions, 

exception handling, and timing [13]. In the remainder of this section, an overview of the 

main modeling components used in SpecC language is presented. 

Behaviors 

A SpecC behavior is an object for the specification of active functionality [14]. In 

general, behaviors are used to encapsulate computations. There are two types of 

behaviors: composite behaviors and leaf behaviors. A behavior is called a composite 

behavior if it contains instantiations of its child behaviors. Conversely, a leaf behavior is 

a behavior that describes an algorithmic program and contains no instantiations of other 

behaviors. 

Syntactically, a behavior definition is begun with keyword behavior. Atypical 

behavior consists of a set of ports, a set of local variables and methods, and a mandatory 

main function. Ports of behaviors allow for communication with other behaviors. The 

local variables and methods in a behavior have private attributes and can only be 



www.manaraa.com

20 

accessed and called within the behavior itself. The main function of a behavior is the 

only public function and is the root of the behaviors execution. It is called whenever an 

instantiated behavior is executed and its completion determines the completion of the 

behavior [14]. If the behavior is a composite behavior, a set of child behavior 

instantiations is included as well. 

Figure 2.7 shows an example of a leaf behavior definition and its block diagram. 

In this example, behavior "task" has an input port pi, an output port p2, a local variable 

a and a local function init. The init function initializes the variable a. The main 

function defines that the functionality of the behavior is to read the input data from port 

pi, increment it by the value of a, and send the result through output port p2. 

Behavior task(in int pi, out int p2) 
{ 

int a ; 

void init(void) 
{ 

a = 1 ; 

} 

void main(void) 
{ 

init ( ) ; 
p2 = pi + a; 

task init() 

}; 
} 

Figure 2.7: An example of leaf behavior in SpecC 

In addition to components in leaf behaviors, composite behaviors may also have 

instances of their child behaviors. A child behavior of a composite behavior may be a leaf 

behavior or another composite behavior. In the main function of the composite behavior, 

the execution of a child behavior is initiated by making a function call to the child's 

main function. As shown in Figure 2.8, there are three types of execution sequences 

supported by SpecC language: sequential, parallel, and pipelined. In sequential execution, 

the default execution sequence in SpecC, one behavior starts its execution when the 

previous behavior finished. SpecC also supports concurrent execution for multiple 
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behaviors by using a par statement or pipelined execution by using a pipe statement. 

Sequential Parallel Pipelined 

X 

Y 

X X 

X 
Y 

Z 

behavior a behavior a behavior a 

void main(void) 
{ 

} ; 

X.main() 
Y.main() 
Z.main() 

void main(void) 
{ 

par { 
X.main() 
Y.main() 
Z.main() 

} 

void main(void) 
{ 

pipe { 
X.main() 
Y.mainO 
Z.main() 

} ; 
} 

} 

Figure 2.8: Execution sequences in SpecC 

Channels and Interfaces 

A SpecC channel is an object designed for the specification of complex 

communication [14]. In general, a channel encapsulates the communication protocol of a 

communication bus. A channel can be considered to be a passive behavior. The variables 

and methods inside the channel are used to define the communication behaviors in the 

system. The channel is accessed by calling its interfaces during communication. The 

interface determines the set of public methods provided by the channel. It serves as a 

prototype of the communication protocols and is available to be used by behaviors during 

their communication. 
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Syntactically, a channel is specified by use of a keyword channel. A channel 

definition typically contains a set of private local variables and methods, and its public 

interfaces. An interface is specified by use of keyword interface. Figure 2.9 shows 

an example of SpecC code describing channel and interface. 

interface I 
{ 

}; 

void send(int X); 
int receive(void); 

channel C implements I 
{ 

int data; 

void send(int X) 
{ 

data = X; 

int receive(void) 
{ 

return(data); 

}; 

behavior A(in int pi, I intfl) 
{ 

void main(void) 
{ 

if (pi > 0) 
intfl.send(pi); 

else 
intfl.send(0) ; 

}; 
} 

behavior B(I intf2, out int p2) 
{ 

void main(void) 
{ 

p2 = intf2.receive(); 

}; 
} 

behavior AB (in int p_in, out int p_out) 
{ 

C cl; 
A al (p_in, cl) ; 
B bl(cl, p_out); 

void main(void) 
{ 

al.main(); 
bl.main(); 

} 
}; 

Figure 2.9: An example of channel and interface in SpecC 
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As we can see in the code, this example consists of one interface I, one channel C 

and three behaviors A, B, and AB. Channel C provides a simple communication protocol 

via an encapsulated integer variable data. The interface I, which the channel 

implements, contains the declarations of two public methods send and receive. The 

composite behavior AB contains two instances of its child behaviors al and bl. These 

two behaviors are to execute concurrently by using a par statement and to communicate 

via channel C. The ports type of the behavior is defined explicitly. If a port is used to 

connect to a channel, an interface is specified as the port type in the behavior definition, 

such as intfl and intf 2. 

Synchronization 

Synchronization is used to control cooperation among concurrent executing 

behaviors. In SpecC, synchronization is provided by using the build-in data type - event. 

Events can be instantiated inside behaviors or channels and bound to ports like any other 

data type. In order to specify synchronization, events are used as the arguments of wait 

and notify statements. As described in [14], the wait statement suspends the current 

behavior from execution until one of the events specified with the wait statement is 

triggered by another behavior at which point execution of the waiting behavior resumes. 

The notify statement triggers all specified events so that all behaviors waiting on one 

of these events can resume their execution. If no behavior is waiting on the triggered 

events at the time of the notify statement, the notification is ignored. Figure 2.10 

shows an example of using event in SpecC program. 
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behavior a(out event el) 
{ 

int data; 
void main(void) 
{ 

data++; 
notify(el); 

} 
}; 

behavior b(in event el) 
{ 

void main(void) 
{ 

wait (el) ; 
printf("Done."); 

} 
}; 

Figure 2.10: An example of event in SpecC 

Timing 

In a SpecC program, since all other statements are executed in zero time, a 

wait for statement is provided to model execution delays during simulations. The 

wait for statement has a single integer argument which refers to the number of time 

units (nanoseconds) for which a behavior should supposed to suspend execution. Figure 

2.11 shows an example on using waitfor statements in a behavior. 

behavior task 
{ 

void main(void) 
{ 

// code block 1 
waitfor(30); 

// code block 2 
waitfor (20) ; 

} 
}; 

Figure 2.11: An example of using waitfor statement in SpecC 

This section has presented an overview of SpecC language covering several basic 

components used in SpecC programming. Many more details about the history, features, 

syntax, and semantics of SpecC language can be found in [4], [13], and [14]. 
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As we can see, SpecC language meets the requirements of system level design 

languages discussed in section 2.2.1. It is widely used in the system level designs of 

embedded systems for both industrial and academic purpose. 
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3. RTOS MODELING AND REFINEMENT IN 

SPECC 

In this chapter, the methodology of RTOS modeling and refinement in system 

level design is presented as follows. In section 3.1, an overview of the System-on-Chip 

design environment (SCE) is presented. Next the SpecC RTOS model and the OS 

refinement methodology are introduced in section 3.2 and 3.3 respectively. Finally, a 

demonstration of RTOS modeling and refinement process in the SCE environment is 

described in section 3.4. 

3.1 SCE Environment 

The System-on-Chip design environment (SCE) is a system level design 

environment developed at the University of California, Irvine. The SCE environment 

consists of a set of tools and user interfaces to help designers refine a functional system 

specification to its accurate implementation with minimal effort. 

The main SCE graphic user interface (GUI) contains three windows, namely, the 

"project management" window, the "design management" window, and the "logging" 

window, a set of toolbars, and various menu options. Each window maintains different 

information about the open project during system level design flow. The toolbars and 

menu options provide tools, services, and management for editing, refining, compiling, 

simulating, etc. For example, the Synthesis menu provides for launching the various 

refinement tools and making synthesis decisions, such as those frequently used in the 

demonstration described in section 3.4. 

As described in [15], the SCE environment consists of four levels of model 

abstraction, namely, specification, architecture, communication, and implementation 

models. Consequently, there are three refinement steps: architecture refinement, 

communication refinement, and hardware/software (HW/SW) refinement. These 



www.manaraa.com

27 

refinement steps are performed in top-down order beginning with a top-most abstract 

specification model. Figure 3.1 below shows the refinement procedures and task flow for 

system design with SCE. 

Functional Specification 
Model Untimed 

untimed 

Structural 
Timed 

Architecture 
Model 

timed 

Bus-functional 
timed 

Communication 
Model 

cycle 
accurate 

Implementation 
Model Cycle-accurate 

Architecture refinement 

Architecture refinement 

Architecture refinement 

OS Refinement 
(RTOS Insertion) 

Architecture 
Exploration 

C ommunication 
Synthesis 

Specification 
Analysis 

Custom HW 
generation 

SW code 
generation 

System level 
Design 

(a) Refinement Procedure (b) Task Flow 

Figure 3.1: Refinement procedure and task flow with SCE 

The specification model is an untimed functional model. It describes only the 

desired system behaviors and has no implementation details or notion of time. 

Architecture refinement transforms this specification model to an architecture model by 

partitioning the system behaviors and mapping these partitions onto the selected 

components. Thus, the architecture model defines the structure of system architecture, 

including estimated execution times for the behaviors of each component. The next step, 

communication refinement, selects a set of system busses and protocols and then maps 

the communication functionality between components onto the system busses. 

Communication refinement creates the bus-functional communication model, which 
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reflects the system architecture consisting of busses and is timed in both computation and 

communication. The final step is the HW/SW refinement which transforms the 

communication model to an implementation model. The implementation model is a 

cycle-accurate structural description consisting of an RTL model for the hardware 

components and instruction-set-specific assembly code for the processors. 

This section has presented an overview of the SCE environment. The main 

purpose of the SCE environment is to assist the designers in facilitating the system level 

design flow efficiently by providing an easy-to-use environment for modeling, synthesis, 

and validation. Many more details about the SCE environment can be found in [15]. The 

SCE environment is the main design environment used in this thesis. 

3.2 SpecC RTOS Model 

System level design is widely used to refine systems from abstract specifications 

to actual implementations by defining and modeling systems at various levels of 

abstraction. On the other hand, real-time operating systems become an increasingly 

important component in today's embedded systems implementation. Therefore, an 

abstract RTOS model which contains the RTOS runtime behavior is needed in system 

level synthesis to assist designers in evaluating the system design at the higher levels of 

abstraction. 

In [2], a RTOS model is developed on top of the SpecC system level design 

language. The SpecC RTOS model provides an abstraction of the key features found in 

modern RTOS like task management, real-time scheduling, preemption, task 

synchronization, and interrupt handling. As shown in Figure 3.2, the RTOS model is 

implemented in the form of SpecC channels. The interface of the RTOS channel can be 

classified into four categories of services: operating system management, task 

management, event handling, and time modeling. 
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typedef int proc; 
typedef unsigned long long int sim_time; 

interface OSAPI 
{ 

/* OS management */ 
void init (void) ; 
void start(void); 

/* task management */ 
proc task_create(char *name, int type, 

sim_time period, sim_time wcet) ; 
void task_activate(proc tid); 
void task_sleep(void); 
void task_resume(proc tid); 
void task_terminate(void); 
void task_endcycle(void); 
void task_kill(proc tid); 
proc par_start(void); 
void par_end(proc p); 

/* event handling */ 

evt event_new(void); 
void event_del(evt e); 
void event_wait(evt e); 
void event_notify(evt e); 

/* time modeling */ 

void time_wait(sim_time nsec); 
} ; 

Figure 3.2: Interface of the SpecC RTOS model 

Operating system management mainly deals with initialization of the RTOS 

kernel when the system starts. Two procedures, init and start, initialize the relevant data 

structures and start the multi-task scheduling. Task management is the main function of 

the RTOS model. It provides management for task creation, termination, suspension and 

activation via different procedures, such as task create, task activate, task terminate, 

task kill, task sleep, task resume, etc. For preemptive multi-task scheduling, two special 

procedures, par start and par end, are used to suspend the calling task for running its 

child task and to resume the calling task's execution when its child tasks finish. In 

modeling of periodic tasks, task endcycle notifies the kernel that a periodic task has 

finished its execution in the current cycle. System calls for event handling re-implement 

SpecC events with RTOS events, event wait and event notify replace the SpecC 

primitives for event wait and notify. The last component in the RTOS interface is time 

modeling, used to model delays during simulation. In the RTOS model, the SpecC delay 
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primitives, such as waitfor, are replaced by time wait calls. 

3.3 OS Refinement Methodology 

In this section, we will illustrate the OS refinement rules and steps via some 

sample examples. OS refinement inserts the RTOS model into the system architecture 

model and creates a scheduled model in which task execution is dynamically scheduled 

by the selected scheduling algorithm. Based on the discussion in [2], the OS refinement 

methodology is summarized in the subsections below. 

3.3.1 Inserting Timing Annotations 

As discussed in the previous chapter, during the system synthesis, the concept of 

time is introduced into the architecture model after architecture refinement by annotating 

delays. In the architecture model, the main purpose of annotating delays is to model the 

average or worst-case execution times of corresponding behaviors on the target 

components. In the scheduled model, these timing annotations will also serve as 

constraints for tasks scheduling. 

In SpecC programs, the waitfor statement is used to model the execution delay 

of each behavior during simulation. Usually a behavior can be divided into several basic 

functional blocks. Therefore, a waitfor statement is inserted at the end of each basic 

block to represent the execution delay of code inside the block. During the OS 

refinement, the RTOS model time_wait calls replace the SpecC waitfor statements 

to model the delay of codes in the block. Alternatively, during task execution, the context 

switch may only happen inside the time_wait calls. Thus, tasks can only be 

preempted at the boundaries of the basis blocks. This assumption is applicable for all the 

scheduling algorithms supported in the RTOS model. 
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3.3.2 Task Refinement 

During the task refinement, behaviors in the architecture model will be converted 

into RTOS-based tasks in the scheduled model. The conversion processes of leaf 

behaviors and composite behaviors are different. Leaf behaviors can be directly 

converted into tasks. During such conversion, an os_task_create method is added 

for creating the task. Each created task has its own task ID. The body of the task in its 

main function is enclosed in a pair of task_activate and task_terminate calls. 

Thus, the RTOS model can control task activation and termination. Figure 3.3 shows an 

example of converting a leaf behavior to a task. An aperiodic task B is created with 

priority equal to zero. 

behavior B 
{ 

void main(void) 
{ 

// code block 1 
waitfor(50) ; 

// code block 2 
Waitfor (10) ; 

} 
}; 

behavior task_B(OSAPI os) 
{ 

int tid; 
void os task create(void) 

tid = os.task create ( "B", APERIODIC, 0, 500) 
} 
void main(void) 
{ 

os.task_activate(tid); 

// code block 1 
os.time_wait(50); 
// code block 2 
os.time wait(10); 

os.task terminate() 

(a) Behavior in 

Unscheduled Model 

(b) Task in 

Scheduled Model 

Figure 3.3: Task refinement for a leaf behavior 

For composite behaviors, the conversion involves the dynamic creation of child 

tasks within a parent task. As in the example shown in Figure 3.4, the par statement in a 

composite task is refined to fork and join the child tasks in the execution of the parent 

task. The parent task creates its child tasks by calling their os_task_create 
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functions. Then the parent task calls par_start to suspend its own execution and start 

the parallel execution of its child tasks in the par statement. After the child tasks finish 

their execution and the par statement exits, par_end is called to resume the execution 

of the parent task. 

/* two parallel behaviors */ 
par 
{ 

bl.main(); 
b2.main(); 

task_bl.os_task_create(); 
task_b2.os_task_create(); 

/* two parallel tasks */ 
os_par_id = os,par_start() 
par 
{ 

task_bl.main(); 
task_b2.main(); 

} 
os.par end(os par id); 

(a) Behavior in 

Unscheduled Model 

(b) Task in 

Scheduled Model 

Figure 3.4: Task refinement for a composite behavior 

3.3.3 Synchronization Refinement 

In the system specification and architecture models, synchronization is 

implemented using SpecC events with the wait and notify primitives. 

Synchronization refinement replaces all events and event-related primitives with 

corresponding event handling routines of the RTOS model [2], RTOS events can be 

created and deleted by event_new and event_del calls. Therefore, in the scheduled 

model, all SpecC event instances are replaced with RTOS events and all SpecC wait 

and notify statements are replaced with RTOS event_wait and event_notify 

calls. An example of such synchronization refinement is shown in Figure 3.5. 
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channel C channel C(OSAPI os) 

event start, done ; 
void send(. . .) 

evt start, done ; 
void send(. . .) 

notify(start); 
wait(done); 

os.event_notify(start); 
os.event_wait(done); 

}; }; 

(a) SpecC Events in 

Unscheduled Model 

(b) RTOS Events in 

Scheduled Model 

Figure 3.5: Synchronization refinement example 

3.3.4 Task Scheduling 

After task refinement and synchronization refinement, both task management and 

synchronization are implemented using the system calls of the RTOS model. Thus, the 

dynamic system behavior is completely controlled by the RTOS model layer [2], The 

next step will be implementation of task scheduling. 

The RTOS model library provides services for task management and scheduling. 

As we know in the unscheduled system model, behaviors can be executed truly in 

parallel by using the par statement. But, in the scheduled model, tasks can only be 

executed in an interleaved way. Thus, in order to model dynamic task scheduling, the 

execution of tasks must be serialized first. The RTOS model ensures that only one task 

can be executed on the simulation kernel at any point of time. This is achieved by 

blocking all other tasks on SpecC events, except the current task. During simulation, the 

RTOS model provides a scheduler to maintain task scheduling. The scheduler is invoked 

if any task state is changed in the system by a RTOS call. Each time the scheduler is 

invoked, it will select a task based on the current scheduling algorithm and task priorities 

from the ready queue, and dispatch it by releasing its SpecC event. Then the selected task 

becomes the current task executing on the simulation kernel, with all other tasks blocked 

by their SpecC events. 
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3.3.5 Summary 

In summary, OS refinement transforms the unscheduled system architecture 

model to the RTOS-based scheduled model in which the RTOS model can provide the 

mechanisms for task management, dynamic task scheduling, communication and 

synchronization, etc. Thus, the simulation results of the scheduled model can be used to 

reflect RTOS behavior and to accurately evaluate a system design at the higher levels of 

abstraction. 

3.4 Demonstration of OS Refinement in SCE 

As discussed in section 3.1, the SCE environment provides tools and interfaces to 

assist designers in modeling and refining system designs at various levels of abstraction. 

Like other refinement steps, OS refinement can be done automatically by selecting 

appropriate tools and options from the SCE environment. This section shows an example 

to demonstrate the design flow of refining the system specification model to the 

RTOS-based scheduled model. 

3.4.1 System Specification Model 

The SCE chart of the specification model for this example is shown in Figure 3.6. 

The task task_set is the top-level behavior, which involves two parallel behaviors 

procl and stil. Behavior procl has two child behaviors, body and isr. The main 

purpose of behavior isr is to function as an interrupt service routine. Behavior body 

has three concurrent child behaviors to, tl and t2, each behavior having two basic 

execution blocks. The waitfor statement is used inside each basic block to model the 

execution delay of the behaviors. Behavior tl is waiting on semaphore semi to start its 

execution, and behavior t2 will wait on semaphore sem2 to execute its second block. 

Behavior stil is used to generate interruptions. There are two interrupts el and e2. 

Each of these interrupts will evoke the interrupt service routine isr, which will release 
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semaphore semi and sem2 to make tl and t2 continue execution. The concurrent leaf 

behaviors in the specification model can be executed truly in parallel by using par 

statements. Figure 3.7 shows the simulation result of the behavior execution status. We 

can see that during time 0 - 10, 20 - 50, and 50 - 80, at least two behaviors are executed 

concurrently. 

Tasksel 

procl 

stil 

body's 

Figure 3.6: SCE chart of the system specification model 
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Figure 3.7: Behavior execution result in the system specification model 

3.4.2 System Architecture Model 

As discussed in section 3.8, the architecture refinement creates the architecture 

model by selecting processing elements (PE) and mapping the different partitions of the 

system behaviors onto each PE. In this example, we select two processing elements: a 

Motorola DSP 56600 and a standard custom hardware element, and name them DSP and 

HW respectively. The behavior procl is mapped onto the DSP and stil is mapped 

onto HW. Figure 3.8 shows the SCE chart of the architecture model. As we can see in the 

top-level behavior task_set, two PE relevant sub-behaviors, DSP and HW, are 

constructed and inserted during architecture refinement. Like the specification model, all 

the concurrent leaf behaviors to, tl and t2 can be executed truly in parallel. The 

simulation result of the behavior execution status is shown in Figure 3.9. 
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Figure 3.8: SCE chart of the system architecture model 
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Figure 3.9: Behavior execution result in the system architecture model 

3.4.3 System Scheduled Model 

The next step of system level synthesis is the OS refinement, which includes 

inserting the RTOS model into the system and dynamically scheduling task execution 
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according to the selected scheduling algorithms provided by the RTOS services. During 

the OS refinement, the RTOS model implementing the RTOS interface is instantiated 

inside each PE in the form of a SpecC channel, as shown in Figure 3.10. SpecC 

behaviors in the architecture model are converted into RTOS-based tasks. SpecC 

waitfor statements are replaced by RTOS time_wait calls to model task' execution 

delay. The SCE environment provides convenient tools to assist the users in selecting 

different scheduling algorithms on each software component. In this example, we use a 

priority-based scheduling algorithm on DSP. The priority of each task is specified inside 

its os_task_create method, while here the priorities of task to, tl and t2 are 3, 2, 

and 1, respectively, with to having the lowest priority and t2 having the highest priority. 

Task execution on each PE is serialized in an interleaved way based on the scheduling 

algorithms and tasks priorities. The simulation result is shown in Figure 3.11. 
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Figure 3.10: SCE chart of the system scheduled model 
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Figure 3.11: Task execution result in the system scheduled model 
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4. DRTOS MODELING AND REFINEMENT IN 

SPECC 

This chapter will present the methodology of modeling and refining distributed 

real-time operating system (DRTOS) during system-level synthesis. Our DRTOS model 

is an extension of the RTOS model introduced in section 3.2, including a global 

synchronizer and a global scheduler. We named it as ERTOS-SS, for extended RTOS 

with global scheduling and synchronization. Like the RTOS model, the ERTOS-SS 

DRTOS model is also built on the SpecC system-level design language and can be easily 

integrated into the existing system-level design flow to accurately reflect DRTOS 

runtime behavior. 

4.1 Summary of DRTOS Services 

The first step in developing a DRTOS model is to determine the functionality 

which should be implemented in the model. In order to explicitly indicate what needs to 

be done, a summary of the basic services based on [7] and [8] in various commercial or 

research DRTOS kernels is listed below: 

. Multiprocessor Task Scheduling - Multitask scheduling on multiprocessor 

systems provides mechanisms for task assignment, task scheduling, resource 

allocation, etc. 

. Load Balancing - During tasks assignment, load balancing for all Processing 

Elements (PEs) must be fulfilled in order to best utilize system resources and 

maximize system performance. 

. Intra-processor Communication (IPC) - Intra-processor communication 

provides mechanisms for sharing data among different processes executed on 

the same PE. 

. Inter-processor Communication (IPC) - On the contrary to intra-processor 
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communication, inter-processor communication provides capability for 

sending and receiving shared data among different tasks physically located on 

different PEs. 

. Distributed Synchronization - Another of the basic services provided by 

DRTOS kernels is distributed synchronization among cooperative tasks 

running in parallel on different PEs. 

. Distributed Mutual Exclusion - Shared resources in multiprocessor systems 

must be protected by distributed mutual exclusion mechanisms. Concurrent 

accesses to shared sources from multiple PEs will be serialized by distributed 

mutual exclusion to secure the integrity of shared resources. 

4.2 DRTOS Model Implementation Guidelines 

In system level design, an abstract DRTOS model is required to perform the 

services listed above and to reflect DRTOS runtime behavior during system level 

synthesis. The methods for achieving these services in different research or commercial 

DRTOS kernels may vary, but at the higher level of abstraction, these services should be 

implemented using system-level design approaches provided in system level design 

languages and refinement methodology. 

Based on the services listed in the previous section, the DRTOS model can be 

separated into three basic modules: allocator, synchronizer, and scheduler. The allocator 

models the mechanism of task allocation and load balancing. The synchronizer is used to 

model task synchronization, as well as to provide both intra- and inter-processor 

communications among tasks. The scheduler provides the capability to model task 

management and task scheduling. 

4.2.1 Allocator 

The main purpose of the DRTOS allocator is to provide the function of task and 

resource allocation for online multiprocessor task scheduling algorithms, as well as 
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maintain load balancing. In [8], the author indicated that multiprocessor architectures 

combined with real-time scheduling represent a delicate problem and an ongoing 

research area. It is clearly easier for an off-line scheduler to be optimal. Thus, in order to 

simplify the scheduling algorithms, the following assumption is used throughout this 

research work: task allocation decisions have been made by system designers before 

runtime. With this assumption, task allocation and load balancing can be accomplished 

during architecture refinement by properly selecting PEs and mapping system behaviors 

onto different components. 

4.2.2 Synchronizer 

The DRTOS synchronizer can provide services for task communication, task 

synchronization, and mutual exclusion. Although communication, synchronization, and 

mutual exclusion are different types of DRTOS services, all of them are required to 

handle task dependency. For example suppose that two tasks tl and t2 are running in 

parallel on two different processors pi and pi. If task tl needs data al computed by 

task t2, the execution of task tl will be suspended until task t2 is completed, at which 

point task 11 will be resumed. This example of distributed synchronization is shown in 

Figure 4.1 (a). Figure 4.1 (b) shows an instance of distributed mutual exclusion. As can 

be seen, task tl running on processor pi wants to access shared resource rl which is 

currently exclusively locked by task t2 running on processor p2. Thus task tl must 

wait until the completion of task t2 in order to execute. These examples show that task 

dependency can be of various types, but at the higher levels of abstraction, we can ignore 

the nature of the dependency and simply formulate an abstraction and assert that task 7\ 

is eligible to be released just after task Tt has finished its execution [16]. 

Therefore, at the higher levels of abstraction, such three types of DRTOS services 

can be abstracted as managing task dependencies. To clearly distinguish different types 

of task dependencies, we category them into two groups: internal task dependency and 

external task dependency. Internal task dependency indicates those dependencies among 
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tasks located on the same PE. On the contrary, external task dependency includes those 

dependencies among tasks locate on different PEs. RTOS-based events and 

event-handling primitives provided by the RTOS channel can be used to handle internal 

task dependencies within each PE. Additionally, our DRTOS model provides a 

synchronizer to manage external task dependencies. More detailed discussion on 

synchronization protocol and the implementation of the DRTOS synchronizer will be 

present in section 4.3. 

Data al 
Task tl 

on processor pi 
Task t2 

on processor p2 

Calculating al Suspended and waiting for the 

result of al. Wait for the 
completion of t2. 

(a) Distributed Synchronization 

Shared 

resource s 1 
Task tl 

on processor pi 
Task t2 

on processor p2 

Suspended and waiting for the Locking s 1 

releasing of si. Wait for the 

completion of t2. 

(b) Distributed Mutual Exclusion 

Figure 4.1 : Example of task dependencies 

4.2.3 Scheduler 

The major functionality of the DRTOS scheduler is to determine execution order 

of all tasks in a system. In a multiprocessor system, tasks can be classified into two 
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groups according to their dependencies with other tasks. If a task has no dependency with 

any other task or only has internal dependencies, this task can be scheduled inside its 

own PE without considering of other tasks on other PEs. Alternatively, if a task has 

external dependencies, its execution order must be synchronized with other tasks located 

on different PEs by a global scheduler. 

As we have introduced in sections 3.2 and 3.3, the SpecC single RTOS channel 

has four categories of interface: OS management, task management, event handling, and 

time modeling. OS refinement inserts RTOS channels into system model to perform 

RTOS services. During simulation, the RTOS channel provides a scheduler to maintain 

task scheduling on each PE. Our DRTOS model is an extension of the single RTOS 

model and all the interfaces provided by the RTOS channel can be reused in our DRTOS 

modeling and refinement process. Therefore, the execution for those tasks without 

external dependencies can be scheduled by the scheduler provided by the single RTOS 

channel inside each PE. 

Additionally, to determine the execution order for those tasks having external 

dependencies, a global scheduler must be implemented in the DRTOS model. The main 

responsibility of such a global scheduler is to adjust task execution order based on their 

external dependencies. It can be considered as an auxiliary of the scheduler provided in 

each RTOS channel. The implementation details of the DRTOS global scheduler will be 

presented in the next section. 

4.3 ERTOS-SS DRTOS Model Implementation 

Based on the implementation guidelines in section 4.2, the ERTOS-SS DRTOS 

model will be focused on functionality of the DRTOS synchronizer and the DRTOS 

global scheduler. More implementation details about these two modules of the 

ERTOS-SS DRTOS model will be presented in this section. The synchronization and 

scheduling protocol will be presented first, followed by an introduction of SpecC 

behaviors of the synchronizer and the global scheduler in the ERTOS-SS DRTOS model. 
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4.3.1 Synchronization Protocol 

Synchronization protocol must be used to handle task dependency in a system 

model. More detailed discussion on different types of synchronization protocols can be 

found in [17]. In the remainder of this section, the synchronization protocol used in the 

ERTOS-SS DRTOS model will be introduced. 

The DRTOS synchronizer must hold information regarding its services, such as 

which tasks depend on which others. In the ERTOS-SS DRTOS model implementation, 

management of task dependency is achieved by using the idea of semaphores. A more 

detailed description of semaphores can be found in [6], Figure 4.2 shows an example of 

using semaphores to manage task dependencies. As we can see, the dependency between 

task tl and task t2 can be accomplished easily by using semaphore si. 

behavior tl behavior t2 
{ { 

void main(void) 
{ 

// code block 1 
waitfor(20); 

//wait semaphore 
wait semaphore si; 

// code block 2 
waitfor(50); 

}; }; 

void main(void) 
{ 

// code block 1 
waitfor(40) ; 

//release semaphore 
release semaphore si; 

// code block 2 
waitfor(30); 

} 

(The second execution block of taskl must be executed after the 

completion of the first execution block of task2.) 

Figure 4.2: Example of using semaphore to manage task dependency 

In implementation of the DRTOS synchronizer, all dependencies among different 

tasks can be managed by creating a set of semaphores. Each semaphore is used to handle 

only one instance of task dependencies. For example, if the execution of task to depends 

on a shared data dl that is calculated in task tl, a semaphore semi is needed for the 

shared data dl to handle dependency between task to and tl. As another example, 

three tasks t2, t3, and t4 need exclusively access a shared resource re si during their 
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execution, while re si only allows one visitor at any point of time. In such a case, a 

semaphore semi is required for the shared resource resl to manage task dependencies 

between t2, t3, and t4. The number of semaphores used in the system is equal to the 

total number of dependencies among all tasks in the system. Each semaphore has two 

types of status: ready and locking. Ready status indicates that the semaphore is not 

locked by any task and is ready to be used. Locking status indicates that the semaphore 

is currently locked by a task and cannot be used by other tasks. When a semaphore is 

created, its initial status is locking. Each semaphore maintains a waiting list to save 

waiting tasks, and a locking list to save locked tasks. Notice that if a semaphore is in 

ready status, both its waiting list and locking list must be empty. But for locking 

status, a semaphore's locking list must be not empty. Since a semaphore can be 

exclusively accessed and locked by only one task at any point of time, the maximum 

length of its locking list equals to one. All the semaphore status and their corresponding 

lists will be saved in a "semaphore status table". The status table will be updated 

whenever the status of a semaphore is changed. 

In the ERTOS-SS DRTOS model, the synchronizer can be seen as an event-based 

process that runs whenever a message (request or release) is received from a task. 

During the execution of a task, if a semaphore is required, the task will send out a 

request message. If a semaphore is released, the task will send out a release 

message. Each time a task issues a request or a release message, the synchronizer 

will receive it. When the synchronizer receives a request message, it looks at the 

semaphore status table to check the status of the required semaphore. If the status of the 

required semaphore is ready, the synchronizer will change it to locking, and invoke 

the DRTOS global scheduler for scheduling. If the status of the required semaphore is 

locking, it means the semaphore currently is being locked by other tasks. The 

synchronizer will not change the status of the required semaphore and directly invoke the 

scheduler for scheduling. Alternatively, if the synchronizer receives a release message, 

its reaction will depend on the status of the released semaphore as well. If the status of 

the released semaphore is ready, the synchronizer will do nothing. If the status of the 
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released semaphore is locking, the synchronizer will change it to ready and invoke 

the scheduler for scheduling. Examples of operations for each scenario are shown in 

Figure 4.3. 

Request semi 
>• Synchronizer 

Check status of semi 

semal 

Status ready locking 
Invoke Scheduler scenl 

Request semi 
>• Synchronizer 

Check status of semi 

semal 

Status locking locking 
Invoke Scheduler scen2 

Release semi 

Check status of semi 

semal 

Synchronizer 

Status locking ready Invoke Scheduler scen3 

Figure 4.3: Operations of the DRTOS synchronizer 

4.3.2 Scheduling Protocol 

Similar to the synchronizer, the DRTOS global scheduler is modeled as an 

event-based process as well. The main responsibility of the scheduler is to manage 

semaphore's waiting and locking list and to determine which task should be executed 
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based on the current scheduling algorithm. The scheduler in the ERTOS-SS DRTOS 

model can provide two scheduling mechanisms: First-In First-Out (FIFO) and 

Priority-Based (PB). 

Based on the synchronization protocol discussed above, there are three scenarios 

that the synchronizer will invoke the global scheduler for task scheduling. The first 

scenario is when the synchronizer changes status of the required semaphore from ready 

to locking. At that time the request task obtains the controls of the required semaphore 

and is ready to be executed. Thus, the scheduler will save the request task to the 

semaphore's locking list and send a run message back to the request task to allow it 

continuing its execution. The second scenario is when the status of the required 

semaphore is locking. The scheduler will add the request task to the semaphore's 

waiting list and send a suspend message back to the request task. In this case, the 

execution of that task will be suspended to wait for further notice. Third, when the 

synchronizer changes status of the released semaphore from locking to ready, the 

semaphore is currently ready to be used by another task. The scheduler will remove the 

release task from the semaphore's locking list and check the waiting list. It the waiting 

list is empty, no further action is needed. Otherwise, the scheduler will select a task based 

on the current scheduling algorithm and task priorities from the waiting list. If the current 

scheduling algorithm is FIFO, the first task in the waiting list will be selected. 

Alternatively, the task with highest priority will be selected for PB scheduling algorithm. 

Then the scheduler will remove the selected task from the semaphore's waiting list, add it 

to the locking list and send a resume message back to this task to resume its execution. 

Finally, the scheduler will properly update the semaphore's waiting list to maintain the 

input orders of the remaining tasks. Examples of operations for each scenario are shown 

in Figure 4.4. 
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Scheduler 

Scheduler 

(Selected task t j based on the current scheduling algorithm) 

Figure 4.4: Operations of the DRTOS global scheduler 

4.3.3 Implementation of the Synchronizer and the Global Scheduler 

The synchronizer and the global scheduler in the ERTOS-SS DRTOS model are 

implemented in the form of SpecC behaviors. Recall from section 2.2.2 that SpecC 

behaviors are the basic unit of functionality in SpecC programs. There are two types of 
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behaviors: composite behaviors and leaf behaviors. Leaf behaviors may have variables 

and methods to define their basic functionality. Composite behaviors can have instances 

of child behaviors and include their functionality by calls to the child's main method. In 

contrast to SpecC channels, the execution of SpecC behaviors is proactive during system 

simulation. 

The high-level functional structure of the ERTOS-SS DRTOS model is shown in 

Figure 4.5. In the ERTOS-SS DRTOS model implementation, the top level composite 

behavior DRTOS_SERV consists of two concurrent child behaviors: DRTOS_SYNC and 

DRTOS_SCHD, which functions as the DRTOS synchronizer and the global scheduler 

respectively. The behavior DRTOS_SYNC provides the functionality of receiving 

messages from tasks executing on each PE, updating the semaphore memory block based 

on the synchronization protocol, and invoking the behavior DRTOS_SCHD through an 

internal event start. The behavior DRTOS_SCHD is responsible for updating 

semaphores' waiting and locking lists and sending various messages back to tasks based 

on the scheduling protocol, and noting its completion to the behavior DRTOS_SYNC 

through another internal event done. The processes of both behaviors DRTOS_SYNC 

and DRTOS_SCHD are placed in an infinite loop and will continue to run infinitely 

throughout the simulation and will always be ready to receive more messages from tasks. 
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Figure 4.5: Functional model of the behavior DRTOS SERV 

Additionally, a channel MSG_IO is created for communication between each 

processing element and the ERTOS-SS DRTOS model. It has two interfaces MSG_SEND 

and MSG_RECV to provide a capability for message exchange between tasks and the 

DRTOS synchronizer. 

The declarations of the behavior DRTOS_SYNC, the behavior DRTOS_SCHD, and 

the channel MSG 10 are shown in Figure 4.6. 
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//data type declarations 

typedef structure 
{ 

MSG_Type msg_type; 
int task_id; 
int sema_id; 

} MSG_Data_Struct; 

//interface declarations 

interface MSG_SEND; 
interface MSG RECV; 

//channel declarations 

channel MSG_IO() implements MSG_SEND, MSG_RECV; 

//behavior declarations 

behavior DRTOS_SYNC 
{ 

MSG_RECV in_msg_recv, 
out event start, 
in event done, 
out MSG_Data_struct invoke_msg 

behavior DRTOS_SCHD 
{ 

MSG_SEND out_msg_send, 
in event start, 
out event done 
in MSG_Data_struct invoke_msg 

Figure 4.6: Declarations of behaviors and channels in the ERTOS-SS DRTOS model 

4.3.3 ERTOS-SS DRTOS Model Implementation Summary 

The ERTOS-SS DRTOS model implementation is focusing on the extension 

services of managing various types of task dependencies. Two SpecC behaviors 

DRTOS_SYNC and DRTOS_SCHD are developed to provide the ERTOS-SS DRTOS 

model the capability of synchronization and global scheduling. The functionality of these 

two behaviors, combined with the interface of the SpecC RTOS channel, may fully 

provide DRTOS services in system-level design. The refinement rules of inserting the 
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ERTOS-SS DRTOS model into the system architecture model during system level 

synthesis will be presented in the next section. 

4.4 ERTOS-SS DRTOS Refinement Methodology 

Recalling the OS refinement process in section 3.3, the RTOS channel is inserted 

inside each processing element to provide RTOS services to the system model. In this 

section, we will begin detailed discussion of the ERTOS-SS DRTOS refinement process. 

The ERTOS-SS DRTOS refinement process inserts the RTOS channels and the extension 

DRTOS behaviors into the system architecture model and creates the scheduled model in 

which all the DRTOS services listed in section 4.1 may be achieved. 

Many refinement methodologies may be performed during system level synthesis 

to move the system models to the lower level of abstraction. In [18], these refinements 

are classified into three categories: structural reorganization, behavioral refinement, and 

communication refinement. Structural reorganization groups refinements that modify the 

hierarchical structure of the modules. Hardware/software partition, allocation and 

binding belong to this category. Behavioral refinement relates to modifying task 

descriptions, I/O primitives may be refined to comply with interface constraints and task 

contents may be modified to comply with semantics at different levels of abstraction. For 

example, when moving from the driver to the RT-level, computations executed on HW 

blocks must be scheduled into clock cycles, and the SW code must be adapted to the 

processor where it will be executed. This may involve adding specific system calls to the 

embedded OS. Finally, communication refinements modify the topology of ports and/or 

nets. Based on these three categories of refinements, the ERTOS-SS DRTOS model 

refinement rules and process are outlined in the subsections below. 

4.4.1 Task Allocation in Architecture Refinement 

The first step in the ERTOS-SS DRTOS refinement process is the task allocation 

during architecture refinement. Recall from section 2.2.1 and 3.1 that there are four 
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system models and three refinement steps in the SpecC system level design flow. 

Architecture refinement allocates the processing elements and maps the modules of the 

functional specification model to these processing elements. Therefore, the ERTOS-SS 

DRTOS refinement process is actually begun at architecture refinement. This architecture 

partitioning process is illustrated in Figure 4.7. By properly allocating and mapping 

system modules to the selected processing elements, task allocation and load balancing 

can be easily accomplished. 

task set 

Task 

Task 

Task 

Task 

Task 

PEO 

Task 

Figure 4.7: Partitioning and mapping tasks onto different PEs 

4.4.2 Mapping DRTOS Extension Behaviors 

The next refinement step is to map the DRTOS synchronizer and global scheduler 

behaviors to a new processing element. With the insertion of the ERTOS-SS DRTOS 

model, two extension behaviors which function as the DRTOS synchronizer and 

scheduler are added to the system model. Thus, after mapping existing system modules 

to selected PEs, a new PE to which the DRTOS extension behaviors will be mapped is 
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needed, as shown in Figure 4.8. 

This new processing element can be a processor, a microcontroller, a DSP, or a 

custom hardware element. The main purpose of this component is to reflect behavior of 

the DRTOS synchronizer and global scheduler during simulation. In the system 

implementation model, these DRTOS extension behaviors along with all the relevant 

functionality of the RTOS channels will be exported into the real DRTOS system calls 

supported by target microprocessors. 

DRTOS SCHD 

DRTOS SYNC 

Figure 4.8: Mapping the extension DRTOS behaviors onto a new PE 

4.4.3 Inserting RTOS Channel 

Another major step in the ERTOS-SS DRTOS refinement process is to insert 

RTOS channel into each PE. The detailed rules and process of the RTOS refinement can 

be found in section 3.3. Figure 4.9 below shows the hierarchy of the system model with 

the insertion of the RTOS channels. 
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Figure 4.9: Insertion of RTOS channels into system model 

4.4.4 Adding Semaphores and Gathering Synchronization Information 

After architecture partitioning phase, all the synchronization-related information, 

such as which task is on which PE or which task depends on which others, must be 

generated for management of external task dependencies. A semaphore is added for each 

instance of dependency. The semaphore-related data types used in the ERTOS-SS 

DRTOS model implementation are shown in Figure 4.10. 
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typedef unsigned int SEMA_Status_Type; 
enum 
{ 

S EMA_S TATU S_READY, 
S EMA_S TATUS_LOCKING, 

NUM_S EMA_S TATUS 
}; 

typedef unsigned int MSG_Type; 
enum 
{ 

MSG_INIT, 
MSG_RUN, 
MSG_SUSPEND, 
MSG_RESUME, 
MSG_REQUEST, 
MSG_RELEASE, 

NUM_MSG_TYPE 
}; 

typedef structure 
{ 

int 
int 

} TASK_Loca_Struct; 

task_id; 
pe_id; 

typedef structure 
{ 

SEMA_Status_Type curr_sema_sts; 
int waiting_list[50]; 
int locking_list[1]; 
TASK_Loca_Struct assoc_tasks[50] ; 

} SEMA_Status_Struct; 

Figure 4.10: Semaphore-related datatypes used in the ERTOS-SS DRTOS model 

Each semaphore has an integer component curr_sema_sts to save its current 

status during execution. Two integer arrays waiting_list and locking_list are 

used to save its waiting and locking task IDs. Since a semaphore can be locked only by 

one task at any point of time, the length of the locking list array is set to one. Here we 

assume that the maximum number of waiting tasks for any semaphore is fifty, thus the 

length of the waiting list array is set to fifty. When a semaphore is created, its initial 

status is locking. A "task" called init is added into its locking list to indicate that the 

semaphore is locked by initialization. Obviously its waiting list is empty. At that time if a 

request message is received, the status of the semaphore will be not changed and the 

request task will be added into the semaphore's waiting list. If a release message is 
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received, the status of the semaphore will be changed from locking to ready. The 

task init will be removed from the semaphore's locking list. All the semaphores' status, 

along with their waiting and locking lists, will be controlled by the DRTOS synchronizer 

and global scheduler behaviors during simulation. Additionally, semaphore status table 

has another data type TASK_Loca_Struct to save the task location information 

associated with each semaphore. Task location information can be gathered after the 

architecture partitioning phase. Figure 4.11 below shows an example of task 

dependencies in a multiprocessor system. Its initial semaphore status table is shown in 

Table 4.1. 

Shared Data 

Shared Resource 

resl 

Figure 4.11: An example of external task dependencies 

Table 4.1 : Initial semaphore status table for the example in Figure 4.11 

Semaphores semal (for datai) sema2 (for resl) 

Current Status locking locking 

Waiting List 

Task ID (empty) (empty) 

Waiting List Task ID Waiting List 

Locking List Task ID init init 

Task Location 
Information 

Task ID tl t3 

Task Location 
Information 

PE ID PEO PEO 

Task Location 
Information 

Task ID t2 t4 
Task Location 
Information 

PE ID PE1 PEO 
Task Location 
Information 

Task ID t5 

Task Location 
Information 

PE ID PE1 

Task Location 
Information 
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4.4.5 Adding Distributed Synchronization and Global Scheduling 

The final step in the ERTOS-SS DRTOS refinement process is to add distributed 

synchronization and global scheduling by using channels and behaviors provided in the 

DRTOS_SERV. Distributed synchronization and global scheduling mainly deal with 

external task dependencies among different PEs and cannot be achieved using SpecC 

events or RTOS-based events. To handle this aspect, the semaphore status table created in 

the previous step and semaphore-related messages must be used. During the DRTOS 

refinement, a hierarchical channel MSG_I0 is created and added into the system 

architecture model. MSG_IO provides the communication platform between each PE and 

the PE with the DRTOS model. It allows the exchange of semaphore-related messages 

between tasks and the DRTOS extension behaviors. Each time when a task requests or 

releases a semaphore, it sends request or release messages to the DRTOS 

extension behaviors through the MSG_SEND interface of the MSG_IO channel. 

Alternatively, the DRTOS extension behaviors receive these messages through the 

MSG_RECV interface, processes messages, and send the response messages back to task 

by calling MSG_SEND. The MSG_IO channels, along with the DRTOS synchronizer and 

scheduler behaviors, can provide the ability to model DRTOS distributed synchronization 

and global scheduling services in system level design. 

Figure 4.12 below shows the hierarchy of the completed system scheduled model 

with the insertion of the ERTOS-SS DRTOS model. 
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DRTOS 

SCHD 

DRTOS 
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Figure 4.12: Hierarchy of complete system model with the ERTOS-SS DRTOS model 

4.4.6 Summary of the ERTOS-SS DRTOS Refinement Methodology 

The following is the summary of the guidelines for the ERTOS-SS DRTOS 

refinement methodology: 

• Properly mapping system functional modules to selected processing elements 

to fulfill task allocation requirements and maintain load balancing. 

• Allocating a new processing element and mapping onto it the DRTOS 

synchronizer and global scheduler behaviors. 

• Inserting the RTOS channel into each processing element. This includes: 

Inserting timing annotations into each behavior to model execution 

delays. 

Refining system behaviors to RTOS-based tasks. 

Replacing SpecC events and event-related primitives with corresponding 
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event-handling routines of the RTOS channel for intra-processor 

synchronization. 

Performing task scheduling with scheduling algorithms supported by the 

RTOS channel. 

• Adding semaphores to manage external task dependencies. 

• Gathering synchronization related information for each semaphore based on 

the architecture partitioning. 

• Adding distributed synchronization and global scheduling by using MSG_IO 

channels and DRTOS extension behaviors provided in DRTOS_SERV. 
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5. CASE STUDY 

In chapter 4, the ERTOS-SS DRTOS modeling and refinement methodology is 

presented. In order to demonstrate that the ERTOS-SS DRTOS model can be easily 

integrated into the existing SpecC system design flow to accurately reflect the DRTOS 

runtime behavior, we will illustrate the ERTOS-SS DRTOS modeling and refinement 

methodology in this chapter by analyzing an example of multitask execution on a 

multiprocessor system. 

5.1 Example Task Set 

The example task set used in this chapter has six concurrent tasks: tl, t2, t3, 

t4, t5, and t6, each with two basic execution blocks. All six tasks will be started at 

time zero. Assume there are two task dependencies in this task set. One is that task 11 

requires the result of a shared data datai which will be calculated when task t5 

finishes its first execution block. The other is that task t4 tries to access a shared 

resource resl which is currently locked by task t3 and will be released when task t3 

finishes its first execution block. The summary of the task characterizations is listed in 

Table 5.1. 

Table 5.1: Task characterizations of the example task set 

Task Start Time Execution Blocks 
tl 0 Wait for result of shared data datai; 20; 30; 
t2 0 30; 40; 
t3 0 50; Release shared resource resl; 10; 

t4 0 20; Wait to access shared resource res 1; 20; 
t5 0 70; Calculate result of shared data datai; 30; 
t6 0 40; 10; 
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5.2 System Specification Model 

In system specification model, each task is implemented as a leaf behavior with 

SpecC waitfor statements used to model its execution blocks. All six leaf behaviors 

are child behaviors of top-level composite behavior task_set. SpecC par statement is 

used in composite behavior for concurrently executing its child behaviors. Task 

dependencies are implemented using SpecC events with wait and notify primitives. 

A high-level representation of the system specification model is shown in Figure 5.1. 

behavior tl(in event evtl) 
{ 

void main(void) 
{ 

// wait for event 
wait(evtl); 
// code blockl 
waitfor(20); 
// code block2 
waitfor(30); 

}; 
} 

behavior t5(out event evtl) 
{ 

void main(void) 
{ 

// code blockl 
waitfor (20) ; 
// notify event 
notify(evtl); 
// code block2 
waitfor(30); 

} 
}; 

task set 

evtl 

behavior task set() 

event evtl, evt2 ; 
tl tskl(evtl); 
t2 tsk2; 
t3 tsk3(evt2) 
t4 tsk4(evt2) 
t5 tsk5(evtl) 
t6 tsk6; 

Void main(void) 
{ 

par { 
tskl.main( 
tsk2.main( 
tsk3.main( 
tsk4.main( 
tsk5.main( 
tskô.main( 

} 
} 

Figure 5.1: Hierarchy of the system specification model 

In general, there is no notion of time in the system specification model. However, 

since the main purpose of this case study is to compare task execution sequences in 

different system models, we add simulation delays for each task started with the 

specification model. Figure 5.2 below shows the simulation result of task execution in 

the system specification model. All tasks start their execution at time 0 expect task tl, 

which is waiting for event evt2. At time 20, task t4 finishes its first execution block 
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and starts to wait for event evtl. At time 50, task t3 finishes its first execution block, 

notifies event evt2, and starts its second execution block. At the same time, task t4 can 

start its second execution block. At time 70, task t5 finishes its first execution block, 

notifies event evtl, and starts its second execution block. At the same time, task tl can 

start its execution. From the simulation result we can see that without task scheduling, 

concurrent leaf behaviors can be executed truly in parallel. For example, during time 0 -

20, five tasks t2, t3, t4, t5, and t6 are executed concurrently; during time 70 - 100, 

two tasks 11 and 15 are executed concurrently. 

ti 

t2 

t3 

t4 

15 

16 

Notify 
evt2 

Notify 
evtl 

20 30 40 50 60 70 90 100 120 

Figure 5.2: Simulation result of the system specification model 

5.3 System Architecture Model 

During architecture refinement, the system specification model is partitioned into 

different functional modules and each module is mapped onto a selected processing 

elements. Additionally, the ERTOS-SS DRTOS refinement methodology requires the task 

allocation and load balancing to be fulfilled in architecture refinement process. In this 

example, all six leaf behaviors in the system specification model are partitioned into two 

composite behaviors: task_setl and task_set2. Two processing elements, a 

Motorola DSP 56600 and a Motorola Coldfire processor, were selected and named as 
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PE1 and PE2 respectively. Behavior task_setl with three concurrent child behaviors 

tl, t2, and t3, is mapped onto PE1. Behavior task_set2 with three concurrent child 

behaviors t4, t5, and t6, is running on PE2. The SpecC-based events used to manage 

task dependencies are encapsulated into SpecC channels. Figure 5.3 shows the system 

architecture model generated by architecture refinement. 

PE1 PE2 

task_setl 

tl < 
t2 

t3 < evt2 

evtl > 
task_set2 

— t5 

A 

> 

t6 

t4 

Figure 5.3: Hierarchy of the system architecture model 

The simulation result of the system architecture model is shown in Figure 5.4. As 

we can see, task execution results are similar to those in the system specification model, 

with the only difference is that the task execution is allocated to two PEs. At time 0, tasks 

t2 and t3 start their execution on PE1, and tasks t3, t4, and t5 start to execute on 

PE1. Task tl is waiting for event evt2. At time 20, task t4 finishes its first execution 

block on PE2 and starts to wait for event evtl. At time 50, task t3 finishes its first 

execution block on PE1, notifies event evt2, and starts its second execution block. At 

the same time, task t4 can start its second execution block on PE2. At time 70, task t5 

finishes its first execution block on PE2, notifies event evtl, and starts its second 

execution block. At the same time, task tl can start its execution on PE1. From the 

analysis of the simulation result we can get the same conclusion: because task scheduling 

is not added into system model, concurrent leaf behaviors can be executed truly in 

parallel. 
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Notify 
evtl 

ti 

t2 
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t4 
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Figure 5.4: Simulation result of the system architecture model 

5.4 System Scheduled Model with the RTOS Model 

To compare the simulation results of the ERTOS-SS DRTOS model with the 

SpecC RTOS model, the next step in this case study is to add RTOS model via OS 

refinement and get the simulation result of the system scheduled model with the RTOS 

model. 

The time_wait call is used inside each basic block of leaf behaviors to model 

the execution delay of the tasks. The priority of each task is specified inside its 

os_task_create method. The RTOS par_start and par_end system calls are 

used in composite behaviors task_setl and task_set2 to fork and join the child 

tasks in the execution of the parent task. The SpecC events evtl and evt2 used in the 

system architecture model are replaced by RTOS-based events. All SpecC wait and 

notify statements are replaced with RTOS event_wait and event_notify calls. 

In the first simulation in this step, we use the same task allocation decision as in 

the system architecture model. On processor PE1, the priorities of task tl, t2 and t3 

are 1, 2, and 3 with tl having the highest priority and t3 having the lowest priority. On 

processor PE2, the priorities of task t4, t5 and t6 are specified as 1, 2, and 3 with t4 



www.manaraa.com

67 

having the highest priority and t6 having the lowest priority. 

However, deadlock is occurred during the simulation. After analysis we find out 

that the reason of deadlock is because that the RTOS model only provides scheduling and 

synchronization inside each PE, but it cannot manage global scheduling and 

synchronization among different PEs. Thus, events can get lost so specifically since the 

RTOS model will change the order of task execution, a task may start to wait for an event 

on a PE which is already released by another task on a different PE. For example, if task 

to on PEO notifies the event evtO at time 10 and task tl starts to wait for event evtO 

on PE1 at time 20, event evtO is lost and deadlock is occurred. 

In the second simulation, another task allocation decision is used: tasks tl, t2, 

and t5 are allocated to PE1, tasks t3, t4, and t6 are allocated to PE2. Thus, there is 

no event exchange between two different PEs. On processor PE1, the priorities of task 

tl, t2 and t5 are 1,2, and 3 with tl having the highest priority and t5 having the 

lowest priority. On processor PE2, the priorities of task t3, t4 and t6 are specified as 3, 

2, and 1 with t6 having the highest priority and t3 having the lowest priority. The 

system scheduled model with insertion of the RTOS model is shown in Figure 5.5. 

PE1 PE2 

task setl 

tl 

t5 

R 
T 
O 
S 

V 

task set2 

Figure 5.5: Hierarchy of the system scheduled model with the RTOS model 

After insertion of RTOS channel in each PE, task management and scheduling are 

implemented using system calls of the RTOS channel. The priority-based scheduling 

algorithm is used in this example. Figure 5.6 shows the simulation results of task 
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execution with the insertion of the RTOS channels. As we can see, tasks are executed on 

each PE in an interleaved way. On PE1, task tl has highest priority and should be 

executed first. But it needs to wait for event evtl. Thus, at time 0, the second highest 

priority task t2 starts its execution. At time 70, task t2 finishes its execution. Since task 

tl is still waiting for event evtl, task t5 starts its execution. At time 140, task t5 

finishes its first execution block and notifies event evtl. Then task preemption happens. 

Task execution of task t5 is suspended and task tl starts its execution. At time 190, task 

tl finishes its execution and task t5 starts its second execution block. At time 220, task 

tl finishes its execution. On PE2, task t6 has highest priority and starts its execution at 

time 0. At time 50, task t6 finishes its execution and the second highest priority task t4 

starts its execution. At time 70, task t4 finishes its first execution block and starts to wait 

for event evt2. Then task preemption happens. Task execution of task t4 is suspended 

and task t3 starts its execution. At time 120, task t3 finishes its first execution block 

and notifies event evt2. Then task preemption happens again. Task execution of task t3 

is suspended and task t4 starts its second execution block. At time 140, task t4 finishes 

its execution and task t3 starts its second execution block. At time 150, task t3 finishes 

its execution. 

Notify Notify 
evt2 evtl 

30 40 50 120 140150160 

Figure 5.6: Simulation results of the system scheduled model with the RTOS model 
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5.5 System Scheduled Model with the ERTOS-SS DRTOS 

Model 

The final step in this example is to add the ERTOS-SS DRTOS model into the 

system architecture model to provide mechanisms for multiprocessor task scheduling and 

manage dependencies among tasks located on different processing elements. 

Recall from section 4.4.2 that the ERTOS-SS DRTOS refinement requires an 

additional processing element to which the DRTOS synchronizer behavior will be 

mapped. In this example, a standard hardware element is selected and named as OS_PE. 

The DRTOS extension behaviors DRTOS_SYNC and DRTOS_SCHD are added into 

system model and mapped onto OS_PE during the ERTOS-SS DRTOS refinement 

process. 

Following the architecture partitioning phase of the ERTOS-SS DRTOS 

refinement, the next step is to add a set of semaphores to manage external task 

dependencies in the system. Two semaphores are added in this example: semaphore 

semal is used to handle dependency between task tl and task 15, semaphore sema2 is 

used to handle dependency between task t3 and task t4. The semaphore status table is 

used to save semaphore status during system execution. Additionally, task location 

information is saved in the semaphore status table after architecture refinement. The 

initial semaphore status table for task set in this example is shown in table 5.2. During 

simulation, the DRTOS synchronizer and global scheduler behaviors can manage 

external task dependencies by accessing information in the semaphore status table. 

Table 5.2: Semaphore status table 

Semaphores semal sema2 

Current Status locking locking 

Waiting List Task ID (empty) (empty) 

Locking List Task ID i n i t  i n i t  

Task Location 

Information 

Task ID tl t3 Task Location 

Information PE ID PE1 PE1 
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Task ID t5 t4 

PE ID PE2 PE2 

The next step is to add the synchronization channel MSG_IO into each tasks and 

the DRTOS synchronizer behavior. Two interfaces of the MSG_IO channel provide 

capability for exchange of semaphore-related messages. The modified code of task tl 

that includes the interfaces of the MSG_IO channel is shown in Figure 5.7. 

//data type declarations 

typedef structure 
{ 

MSG_Type msg_type; 
int task_id; 
int sema_id; 

} MSG_Data_Struct; 

//interface declarations 

interface MSG_SEND; 
interface MSG_RECV; 

behavior tl(OSAPI os, MSG_IO msg) 
{ 

int tid; 
MSG_Data_Struct msg_data; 

void os_task_create(void) 
{ 

tid = os.task_create("tl", APERIODIC, 0, 500); 
} 
void main(void) 
{ 

os.task_activate(tid); 
msg_data.msg_type = MSG_REQUEST; // request sema 
msg_data.task_id =1; // task ID is tl 
msg_data.sema_id =1; // sema ID is semal 

// code block 1 
os.time_wait(50); 

// request semi 
msg.MSG_SEND(msg_data); 

// code block 2 
os.time_wait(10); 

os.task_terminate(); 
} 

}; 
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Figure 5.7: Updated SpecC code of task tl 

The finished system scheduled model with insertion of the ERTOS-SS DRTOS 

model is shown in Figure 5.8. 

OS PE 

MSG 10 

PE1 

DRTOS_ SERV 

DRTOS _SCHD 

DRTOS _SYNC 

task setl 

MSG 10 

PE2 

task set2 

Figure 5.8: Hierarchy of the system scheduled model with the ERTOS-SS DRTOS model 

Figure 5.9 shows the task execution results after the insertion of the ERTOS-SS 

DRTOS model. With the services of task scheduling and synchronization provided by the 

ERTOS-SS DRTOS model, task execution on each processor is serialized in an 

interleaved way based on the scheduling algorithms and task dependencies. In this 

example, a priority based scheduling algorithm is used. At time 0, all six tasks are ready 

to be executed. On processor PE1, task tl has the highest priority and should be 

executed first. But task tl is waiting for semi and its execution is suspended. Thus, the 

task with the second highest priority t2 will be executed first. On processor PE2, task 

t4 has the highest priority and will be executed first. At time 20, task t4 on processor 

PE2 finishes its first execution block and will wait for sem2 to start its second execution 
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block. Therefore, task preemption happens and task t5 which has the second highest 

priority will start to execute on processor PE2. At time 70, task t2 has finished its two 

execution blocks on processor PE1. Since task tl is still waiting for semi, task t3 will 

start to execute on processor PE1. At time 90, task t5 has finished its first execution 

blocks so it releases semi. Since task t4 is still waiting for sem2, task t5 will continue 

executing its second execution block. On processor PE1, since semi has been released, 

task tl will change its status from "suspended" to "ready". Recall that the task 

preemption can only happen at the boundary of the basic execution block. Since at that 

time task t3 is running its first execution block, it will keep executing to time 120. At 

time 120, task t3 finishes its first execution block and releases sem2. Then task 

preemption happens and task tl begins its execution on processor PE1. On processor 

PE2, task t5 finishes its second execution block. Since sem2 has been released, t4 will 

begin to execute its second execution block. At time 140, task t4 finishes execution and 

task t6 starts execution. At time 170, task tl finishes execution and task t3 starts its 

second execution block. At time 180, task t3 finishes execution on processor PE1 and at 

time 190 task t6 finishes execution on processor PE2. 

A 
ti 

t2  < '  >  

t3 

t4 " 

l5 ..--14 

« H-

20 30 

Figure 5.9: Simulation results of system scheduled model with the ERTOS-SS DRTOS 

model 
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5.6 Summary of Case Study 

The result of this case study shows that in the system specification and 

architecture models, no task scheduling and synchronization is added. All concurrent 

tasks can be executed truly in parallel. At any point of time, it is possible that there are 

more than one tasks are being executed, which is not supported in any OS or real 

embedded system implementation. Thus, the system specification and architecture model 

cannot provide ability for modeling OS in system level design. 

The SpecC RTOS model can provide basic RTOS services into system model, 

such as task management, event handling, etc. The insertion of the RTOS model can 

assistant designers in simulating runtime RTOS behavior during system level synthesis. 

However, the SpecC RTOS model cannot provide management for global scheduling and 

synchronization. It lacks support for modeling DRTOS in multiprocessor environment. 

The ERTOS-SS DRTOS model is an extension of the SpecC RTOS model with a 

global synchronizer and a global scheduler. The ERTOS-SS DRTOS model can be 

inserted into system architecture model for efficient evaluation of multiprocessor task 

scheduling and synchronization implementation. 
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6. RELATED WORK 

In this chapter, an overview of related research work on system level design 

methodologies for multiprocessor embedded systems or Multiprocessor System-on-Chip 

(MPSoC) is presented. 

In [19], Reyes et al. introduced a tool called CASSE, what stands for CAmellia 

System-on-chip Simulation Environment. CASSE is a fast, flexible, and modular 

SystemC-based simulation environment which aims to be useful for design-space 

exploration and system-level design at different levels of abstraction. CASSE provides 

fast simulations and easy architectural modeling by using transaction-level modeling 

techniques. Moreover, CASSE provides a seamless KPN-derived protocol refinement to 

cover from application to system implementation. CASSE is being used in the 

CAMELLIA project, which is focuses on the mapping of innovative smart imaging 

applications onto an existing video encoding architecture. 

The Colif project is presented by Cesario et al. in [18]. The main goal of Colif 

project is to provide a design representation that is able to model on-chip communication 

at different levels of abstraction while clearly separating component behavior from the 

communication infrastructure. Colif is an object-oriented intermediate model that 

supports multiple communication models at multiple levels of abstraction. Inside Colif 

model, the levels of abstraction for communication are classified into four categories: 

service level, message level, driver level, and register transfer (RT) level, with service 

level being the highest level of abstraction and RT-level being the lowest level of 

abstraction. The modeling and refinement methodology for using Colif to design 

communication model at different levels of abstraction are also presented in [18]. 

Currently, the Colif model is used to build a design flow for Application-Specific 

Multiprocessor SoC Architectures (ASMSA), and for mixed-level executable model 

generation. 

Another system-level processor/communication co-exploration methodology for 
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multiprocessor System-on-Chip platforms is presented in [20]. In this co-exploration 

methodology, the architecture description language (ADL) LISA is used for the 

system-level description of processor architectures, and SystemC based CA transaction 

level modeling (TLM) captures the communication architecture and further peripheral 

devices. The major contribution of this methodology is to provide a retargetable 

integration of arbitrary LISA-based processor models with SystemC-based 

communication platform models, as well as a joint top-down refinement and an iterative 

profiling driven optimization of heterogeneous multiprocessor SoCs. 

Other related research projects includes [21], [22], [23], and [24], presented 

different system level design methodologies for modeling multiprocessor system MPSoC. 

More generic information about metrics of MPSoC and the future of MPSoC can be 

found in [25] and [26]. 

The ERTOS-SS DRTOS modeling and refinement methodology introduced in this 

thesis is differentiated from other work in that it provides a DRTOS model on top of 

existing SpecC system level design language and it can be integrated into the existing 

system level synthesis flow with a minimal effort. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

System level design is one of the main technologies used in today's embedded 

computing system design and development. The main purpose of system level design is 

to assist designers in evaluating and optimizing systems early in design exploration. Due 

to the use of multiple processors in today's complex embedded systems, there is a need 

to develop a distributed real-time operating system modeling mechanism as part of 

system level design methodology. 

In this thesis, the ERTOS-SS DRTOS modeling and refinement methodology 

based on SpecC system level design language is presented. The ERTOS-SS DRTOS 

model can provide the basic functionalities of DRTOS implementation such as 

multiprocessor task scheduling, inter-processor communication, distributed 

synchronization and mutual extension, etc. Refinement rules for inserting the ERTOS-SS 

DRTOS model into existing system level design flow have also been presented. These 

refinement rules were applied to an example task set to demonstrate the steps of the 

ERTOS-SS DRTOS refinement process. In summary, the ERTOS-SS DRTOS modeling 

and refinement methodology is mainly focused on simulating system runtime behavior at 

the higher levels of abstraction in order to allow designers to validate system 

functionality, evaluate system performance, and modify design strategies before any 

implementation has been done. 

7.2 Future Work 

Based on observations and experience gained in performing this project, several 

potentially fruitful possibilities for future work may be summarized as follows: 

i. Our current DRTOS modeling and refinement methodology is suited for 
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offline multiprocessor task scheduling algorithms in which the task allocation 

decision is made before runtime. Since dynamic task allocation and load 

balancing are the critical components in many online multiprocessor task 

scheduling algorithms, one possible future topic could be to add support of 

online scheduling with dynamic mapping system behavior onto different 

components. 

Hardware reconfiguration operating systems [27] [28] are widely used in 

today's embedded systems to dynamically schedule hardware tasks on custom 

hardware processing elements such as ASICs and FPGAs. Modeling and 

refinement methodology for hardware reconfiguration OS is required to 

reflect its abstract behavior in system level design. Therefore, the extension of 

our DRTOS modeling and refinement with the support of both conventional 

OS and hardware reconfiguration OS should be an interesting topic. 

The SCE environment can provide convenient tools and options for automatic 

single RTOS modeling and refinement during system level synthesis. 

Currently the DRTOS modeling and refinement is manually performed by 

system designers. One area of future work could lie in developing tools and 

options for assisting automatic DRTOS modeling and refinement design flows 

in the SCE environment. The automation of this process would greatly 

increase the efficiency for system level designs of multiprocessor embedded 

systems with DRTOS. 

Compared to SpecC, the SystemC language has greater industry support and 

is more widely used by many major vendors. Recently, a great deal of 

research work has been focusing on developing a modeling framework based 

on SystemC to support the modeling of multiprocessor-based RTOS s and to 

provides system designers with a user-friendly and efficient modeling and 

simulation environment [16]. But to our knowledge, the lack of ability to 

support the DRTOS modeling on top of the SystemC language and to 

integrate the DRTOS refinement into the existing SystemC design flow still 
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need to be addressed. Thus, our DRTOS modeling and refinement 

methodology could be added into the SystemC language as a new modeling 

feature, as in SpecC. More details about SystemC language can be found in 

[29] and [30]. 
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