
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

Distributed real-time operating system (DRTOS)
modeling in SpecC
Ziyu Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Ziyu, "Distributed real-time operating system (DRTOS) modeling in SpecC " (2006). Retrospective Theses and Dissertations.
1383.
https://lib.dr.iastate.edu/rtd/1383

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1383?utm_source=lib.dr.iastate.edu%2Frtd%2F1383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Distributed real-time operating system (DRTOS) modeling in SpecC

by

Ziyu Zhang

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Diane T. Rover (Major Professor)
Gurpur M Prabhu

Zhao Zhang

Iowa State University

Ames, Iowa

2006

Copyright © Ziyu Zhang, 2006. All rights reserved.

www.manaraa.com

UMI Number: 1439846

®

UMI
UMI Microform 1439846

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

11

TABLE OF CONTENTS

LIST OF FIGURES iv

LIST OF TABLES vi

ACKNOWLEDGEMENT vii

ABSTRACT vm

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Statement of the Problem 2

1.3 Objective of the Research 3

1.4 Contribution 3

1.5 Thesis Outline 3

2. BACKGROUND 5

2.1 Operating Systems 5

2.1.1 Overview 5

2.1.2 Real-Time Operating Systems 7

2.1.3 Distributed Real-Time Operating Systems 13

2.2 System Level Design Language 16

2.2.1 Overview 16

2.2.2 SpecC Language 19

3. RTOS MODELING AND REFINEMENT IN SPECC 26

3.1 SCE Environment 26

3.2 SpecC RTOS Model 28

3.3 OS Refinement Methodology 30

3.3.1 Inserting T iming Annotations 30

3.3.2 Task Refinement 31

3.3.3 Synchronization Refinement 32

3.3.4 Task Scheduling 33

3.3.5 Summary 34

3.4 Demonstration of OS Refinement in SCE 34

3.4.1 System Specification Model 34

3.4.2 System Architecture Model 36

3.4.3 System Scheduled Model 37

4. DRTOS MODELING AND REFINEMENT IN SPECC 40

4.1 Summary of DRTOS Services 40

4.2 DRTOS Model Implementation Guidelines 41

4.2.1 Allocator 41

4.2.2 Synchronizer 42

4.2.3 Scheduler 43

4.3 ERTOS-SS DRTOS Model Implementation 44

4.3.1 Synchronization Protocol 45

4.3.2 Scheduling Protocol 47

www.manaraa.com

iii

4.3.3 Implementation of the Synchronizer and the Global Scheduler 49

4.3.3 ERTOS-SS DRTOS Model Implementation Summary 52

4.4 ERTOS-SS DRTOS Refinement Methodology 53

4.4.1 Task Allocation in Architecture Refinement 53

4.4.2 Mapping DRTOS Extension Behaviors 54

4.4.3 Inserting RTOS Channel 55

4.4.4 Adding Semaphores and Gathering Synchronization Information 56

4.4.5 Adding Distributed Synchronization and Global Scheduling 59

4.4.6 Summary of the ERTOS-SS DRTOS Refinement Methodology 60

5. CASE STUDY 62

5.1 Example Task Set 62

5.2 System Specification Model 63

5.3 System Architecture Model 64

5.4 System Scheduled Model with the RTOS Model 66

5.5 System Scheduled Model with the ERTOS-SS DRTOS Model 69

5.6 Summary of Case Study 73

6. RELATED WORK 74

7. CONCLUSIONS AND FUTURE WORK 76

7.1 Conclusions 76

7.2 Future Work 76

BIBLIOGRAPHY 79

www.manaraa.com

IV

LIST OF FIGURES

Figure 2.1 : Examples of advanced operating systems 7

Figure 2.2: Hard real-time system and soft real-time system 8

Figure 2.3: Task state transition 10

Figure 2.4: Interprocess communication via a shared data structure 12

Figure 2.5: Interprocess communication via message queues 12

Figure 2.6: Models of computation in SpecC and SystemC 18

Figure 2.7: An example of leaf behavior in SpecC 20

Figure 2.8: Execution sequences in SpecC 21

Figure 2.9: An example of channel and interface in SpecC 22

Figure 2.10: An example of event in SpecC 24

Figure 2.11: An example of using wait for statement in SpecC 24

Figure 3.1: Refinement procedure and task flow with SCE 27

Figure 3.2: Interface of the SpecC RTOS model 29

F igure 3.3: T ask refinement for a leaf behavior 31

Figure 3.4: Task refinement for a composite behavior 32

Figure 3.5: Synchronization refinement example 33

Figure 3.6: SCE chart of the system specification model 35

Figure 3.7: Behavior execution result in the system specification model 36

Figure 3.8: SCE chart of the system architecture model 37

Figure 3.9: Behavior execution result in the system architecture model 37

Figure 3.10: SCE chart of the system scheduled model 39

Figure 3.11: Task execution result in the system scheduled model 39

Figure 4.1 : Example of task dependencies 43

Figure 4.2: Example of using semaphore to manage task dependency 45

Figure 4.3: Operations of the DRTOS synchronizer 47

Figure 4.4: Operations of the DRTOS global scheduler 49

Figure 4.5: Functional model of the behavior DRTOS SERV 51

Figure 4.6: Declarations of behaviors and channels in the ERTOS-SS DRTOS model 52

Figure 4.7: Partitioning and mapping tasks onto different PEs 54

Figure 4.8: Mapping the extension DRTOS behaviors onto a new PE 55

Figure 4.9: Insertion of RTOS channels into system model 56

Figure 4.10: Semaphore-related data types used in the ERTOS-SS DRTOS model 57

Figure 4.11: An example of external task dependencies 58

Figure 4.12: Hierarchy of complete system model with the ERTOS-SS DRTOS model 60

Figure 5.1: Hierarchy of the system specification model 63

Figure 5.2: Simulation result of the system specification model 64

Figure 5.3: Hierarchy of the system architecture model 65

Figure 5.4: Simulation result of the system architecture model 66

Figure 5.5: Hierarchy of the system scheduled model with the RTOS model 67

www.manaraa.com

V

Figure 5.6: Simulation results of the system scheduled model with the RTOS model 68

Figure 5.7: Updated SpecC code of task tl 71

Figure 5.8: Hierarchy of the system scheduled model with the ERTOS-SS DRTOS model 71

Figure 5.9: Simulation results of system scheduled model with the ERTOS-SS DRTOS model....72

www.manaraa.com

VI

LIST OF TABLES

Table 2.1 : Examples of different numbers of users and tasks 6

Table 2.2: Examples of different design approaches 6

Table 4.1 : Initial semaphore status table for the example in Figure 4.11 58

Table 5.1: Task characterizations of the example task set 62

Table 5.2: Semaphore status table 69

www.manaraa.com

Vil

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my thanks

to my major advisor, Dr. Diane T. Rover, for her invaluable instruction during the

whole work with this thesis. It is a great honor for me to work with her. She is always

there to listen and give advice, encourage and guide me to a deeper and broader

understanding of the work, and show me the need to be persistent to accomplish any

goal.

I would also like to thank my committee members: Dr. Zhao Zhang and Dr.

Gurpur M. Prabhu, for their efforts and contributions for this work. Thank you for all

your good comments and questions to help me think through my work.

I want to say 'thank you' to my friends in our embedded system group. I am

fortunate to have the opportunity to meet them and I enjoy every moment that we

have worked together. I want especially to thank Joseph Schneider, Mikel Bezdek,

Ramon Mercado, Daniel Helvick, and Andrew Larson for sharing their technical

wisdom, research ideas, and many other things about life. I appreciate all their

friendships and encouragement.

A special thanks gives to my family. My parents' encouragement and

unconditional support are always with me and give me endless strength. My wife

Shu's love help me go through all the though time and become a better person.

To all of you, thank you.

www.manaraa.com

vin

ABSTRACT

System level design of an embedded computing system involves a multi-step

process to refine the system from an abstract specification to an actual implementation

by defining and modeling the system at various levels of abstraction. System level

design supports evaluating and optimizing the system early in design exploration.

Embedded computing systems may consist of multiple processing elements,

memories, I/O devices, sensors, and actors. The selection of processing elements

includes instruction-set processors and custom hardware units, such as application

specific integrated circuit (ASIC) and field programmable gate array (FPGA).

Real-time operating systems (RTOS) have been used in embedded systems as an

industry standard for years and can offer embedded systems the characteristics such as

concurrency and time constraints. Some of the existing system level design languages,

such as SpecC, provide the capability to model an embedded system including an

RTOS for a single processor. However, there is a need to develop a distributed RTOS

modeling mechanism as part of the system level design methodology due to the

increasing number of processing elements in systems and to embedded platforms

having multiple processors. A distributed RTOS (DRTOS) provides services such as

multiprocessor tasks scheduling, interprocess communication, synchronization, and

distributed mutual exclusion, etc.

In this thesis, we develop a DRTOS model as the extension of the existing

SpecC single RTOS model to provide basic functionalities of a DRTOS

implementation, and present the refinement methodology for using our DRTOS model

during system level synthesis. The DRTOS model and refinement process are

demonstrated in the SpecC SCE environment. The capabilities and limitations of the

DRTOS modeling approach are presented.

www.manaraa.com

1

1. INTRODUCTION

1.1 Motivation

Today, embedded system products are widely used in our everyday lives.

Embedded systems can be found in aviation, marine, and automotive navigation devices.

Those devices require high accuracy, high quality, high reliability, and high stability.

Consumer handheld devices represent another type of product relying on embedded

systems that demand multi-functionality, easy of use, energy efficiency, and low-cost.

In general, an embedded system consists of a variety of different processing

elements, storage units, I/O devices, sensors, actors, etc. The selection of processing

elements includes instruction-set processors, application-specific integrated circuits

(ASICs), and reconfigurable hardware devices such as field-programmable gate arrays

(FPGAs). Advances in processor technology and architecture have led to a

near-exponential increase in processing element speed making embedded systems more

and more powerful. However, the complexity of embedded systems has increased more

rapidly than the performance of individual processing elements. Today's applications

often require considerably more computational power than a single processor can offer.

Therefore, utilizing parallel or distributed systems architecture combined with multiple

processing elements has often become necessary. Additionally, distributed operating

systems are becoming an important software component in embedded systems used to

provide the high-level procedures for dynamically managing the tasks and resources in a

multiprocessor environment. The use of multiple processing elements and distributed

operating systems in embedded systems permits the execution of application tasks in a

true multi-tasking manner, which can dramatically improve the performance of the

embedded systems.

Unfortunately, these advancements also significantly increase the complexity of

system architecture and design for embedded systems. In order to handle the

extraordinary competition present in the real industrial world today, designers are driven

www.manaraa.com

2

to shorten their development cycle and place their products on the market as quickly as

possible. Thus, a new design method is needed to assist designers in producing complex

multiprocessor-based embedded systems more quickly and with less cost.

1.2 Statement of the Problem

In multiprocessor embedded systems design, system functionality and timing are

the two main aspects of system constraint. Many design decisions such as tasks and

resources allocation, selection of task scheduling algorithms, memory requirements, etc,

may affect these constraints. Overall analysis of such critical system level effects is a

major challenge. In order to study these effects before any implementation has been done,

designers need a system-level model capable of capturing system runtime behavior on a

multiprocessor platform.

System level design is a multi-stage process for refining a system from an

abstract specification to an actual implementation. In recent years, system level design

languages and tools have been introduced, allowing designers to define and model

systems at various levels of abstraction [1], The main goal of system level design

languages (SLDL) is to help designers in managing high complexity of embedded

systems during early design exploration.

At their earlier implementations, system level design languages lacked support

for modeling real-time operating systems (RTOSs). After considerable research work

focused on this area, RTOS modeling is being increasingly supported in system level

design. In [2], Gerstlauer, et al, introduced their RTOS model built on top of the existing

SLDL - SpecC, which supports all of the key concepts in the RTOS kernels, such as task

management, preemption, task synchronization, and interrupt handling. In [3], a

transaction-level model (TLM) with RTOS scheduling support is developed, which

allows designers to select the correct scheduling algorithm at the higher levels of

abstraction so that the system performance can be improved. However, these models

currently only support modeling for a single RTOS kernel and cannot be used in

www.manaraa.com

3

multiprocessor systems.

1.3 Objective of the Research

In order to fully facilitate system level design approaches in embedded systems

with multiple processing elements, a new system level OS model must be developed to

capture distributed real-time operating system (DRTOS) runtime behavior. This thesis

addresses this design issue by introducing a highly abstract DRTOS model into system

level design. Our DRTOS model is the extension of the RTOS model introduced in [2]

including a global synchronizer and a global scheduler. We named it as ERTOS-SS, for

extended RTOS with global scheduling and synchronization. The ERTOS-SS DRTOS is

written on top of the SpecC language and can be integrated into existing system level

design flows to accurately reflect distributed real-time operating system behavior during

system level synthesis.

1.4 Contribution

The following is a summary of the contributions of this research project.

• Analysis and simulation of the existing SpecC RTOS model.

• Demonstration of the OS refinement process with insertion of SpecC RTOS

model into a system model using the SCE environment.

• Modeling and refinement methodology of the abstract ERTOS-SS DRTOS

model.

• The ERTOS-SS DRTOS model implementation of an example multitask

multiprocessor system as a case study.

1.5 Thesis Outline

The thesis is organized into 7 chapters. The introduction in chapter 1 provides

motivation and the statement of problem. The objectives and the contributions of this

www.manaraa.com

4

research work are also described in this chapter.

Chapter 2 provides background materials of operating systems, including the

main components and features of real-time operating systems and distributed real-time

operating systems. This chapter also presents an briefly overview of system level design

languages, followed by a description of the detailed features of the SpecC language, the

system level design language used in this research work.

Chapter 3 first introduces the SCE system level design environment used in this

research work. Then a brief analysis of the existing SpecC RTOS model and a

demonstration of the OS refinement process in the SCE environment are presented.

In Chapter 4, the ERTOS-SS DRTOS modeling and refinement methodology is

presented. It starts with a summary of the DRTOS services which must be implemented

in the ERTOS-SS DRTOS model. Then the implementation details of the ERTOS-SS

DRTOS model and the ERTOS-SS DRTOS refinement methodology are discussed.

A case study of using the abstract ERTOS-SS DRTOS model is demonstrated in

Chapter 5. The simulation results of experiments are also shown in this chapter.

Chapter 6 summarizes related work on system level design methodologies for

multiprocessor embedded systems or Multiprocessor System-on-Chip (MPSoC).

Finally, a conclusion and some recommended topics for future work are presented

in Chapter 7.

www.manaraa.com

5

2. BACKGROUND

In this chapter, an introduction of operating systems is given in section 2.1.1,

followed by the detailed discussion on real-time operating systems and distributed

real-time operating systems in section 2.1.2 and 2.1.3, respectively. In section 2.2.1, a

brief overview of system level design languages is presented. Then one of the most

prominent system level design languages, SpecC [4], developed at the University of

California, Irvine, is introduced in section 2.2.2.

2.1 Operating Systems

2.1.1 Overview

Operating systems provide a layer of abstraction between the user and the bare

machine. Users and applications do not see the hardware directly, but view it through

operating systems. There are many types of operating systems, and their complexity

varies depending upon what types of functions are provided, and for what the system is

being used. There is no universal definition of what an operating system consists of.

Normally operating systems can provide the following two basic functions.

Perform Resource Management

This includes:

• Time management (CPU and disk scheduling)

• Space management (main and secondary storages)

• Process synchronization and deadlock handling

• Accounting and status information

Provide User Friendliness

This includes:

• Execution environment

• Error detection and handling

www.manaraa.com

6

• Protection and security

• Fault tolerance and failure recovery

The categories of operating systems are also complex. Depending on the number

of tasks that can be performed simultaneously and the number of simultaneous users that

can be supported, operating systems can be categorized as single-user single-task,

single-user multi-task, or multi-user multi-task. Table 2.1 below shows some examples.

Table 2.1: Examples of different numbers of users and tasks

OS Users Tasks Processors

MS DOS S S 1

Windows 3x S S 1

Amiga DOS S M 1

Windows 9x S M 1

hline MTS M M 1

Windows NT/2000/XP M M N

UNIX M M N

VMS M M N

Depending on the various design approaches, operating systems styles have been

classified in different catalogs as: the monolithic approach, the layered approach, the

kernel-based approach, and the virtual machine approach. Table 2.2 below lists some

examples of these different approaches.

Table 2.2: Examples of different design approaches

Design Approach OS

Monolithic Approach MS-DOS, MVS

Layered Approach THE, MULTICS

Kernel-based Approach Linux, Unix, Windows 2000

Virtual Machine Approach IBM VM/370

Early operating systems designers focused on the stand-alone computer with a

single processor. After decades of development in computer architecture and increasing

complexities in computer applications, advanced operating systems have recently

www.manaraa.com

7

become a mainstream technology. Generally, advanced operating systems can be

classified as architecture driven, application driven, and hybrids of these two approaches.

Several examples of advanced operating systems are shown in Figure 2.1.

i

Multiprocessor OS OS for SensorNets Database OS

Distributed OS OS for PDA Real-time OS

Hybrids Architecture Driven Application Driven

Advanced Operating Systems

Figure 2.1 : Examples of advanced operating systems

In the following two sections (2.1.2 and 2.1.3), more detailed features of real-time

operating systems and distributed real-time operating systems will be presented,

respectively.

2.1.2 Real-Time Operating Systems

Real-time operating systems (RTOS), such as VxWorks, pSoS, and QNX, are the

operating systems used in embedded real-time systems. In order to fully understand the

features of real-time operating systems, a brief overview of real-time systems will first be

presented.

Real-time systems are computing systems that have both logic and timing

constraints. In an ordinary system, the value of the output typically determines the

correctness of the system. But in a real-time system, time issues must be considered as

www.manaraa.com

8

well. The principal responsibility of real-time systems can be summarized as that of

producing correct results within a certain time interval - a deadline. A correct output

produced too late or too early could often be useless or even dangerous.

Depending on types of deadlines, a real-time system can be defined as a hard

real-time system or a soft real-time system. As described in [5], hard real-time systems

can be thought of as a particular subclass of real-time systems in which the lack of

adherence to deadlines may result in catastrophic system failure. Examples of hard

real-time systems include avionic control systems, vehicle control systems, and industrial

automation systems, etc. On the other hand, soft real-time systems are those real-time

systems in which the ability to meet deadlines is a high-priority requirement, but failure

to do so does not necessarily cause system failure. Multimedia processing systems and

internet web servers are examples of soft real-time systems. Figure 2.2 illustrates the

difference between hard real-time systems and soft real-time systems.

Value Deadline Value Deadline

Time Time

(a) Hard Deadline (b) Soft Deadline

Figure 2.2: Hard real-time system and soft real-time system

The main objective of real-time operating systems is to simplify the development

process of real-time systems by providing a set of interfaces with a higher abstraction

level than that offered by the bare hardware architecture. Modern real-time operating

systems are based on the complementary concepts of multitasking and interprocess

www.manaraa.com

9

communications. A multitasking environment allows a real-time application to be

constructed as a set of independent tasks, each with its own thread of execution and set of

system resources. Interprocess communication facilities allow these tasks to synchronize

and communicate to coordinate their activities [6], This section presents an overview of

the main components and features used in real-time operating systems.

Tasks

A real-time application performs a set of pre-defined actions within a certain time

frame. Each of these actions is typically defined as a task. A real-time task can be

classified as periodic or aperiodic depending on its arrival pattern. Tasks with regular

arrival times are called periodic and tasks with irregular arrival times are called aperiodic.

Each task has its own context, which contains the CPU environment and system

resources that the task sees each time it is scheduled to run. In a real-time operating

system, the context of a task is stored in a data structure, called the task control block

(TCB). In a preemptive scheduling algorithm, the context of each task is stored into, or

reloaded from, the task TCB during context switching.

Real-time operating systems maintain the current state of each task in the system.

The states may have different names in different operating systems, and some additional

states may exist in some operating systems. Generally, based on [6], a task at any point of

time can be in one of the following states: running, ready, waiting, and suspend. When

first created, tasks enter the suspend state. Activation is required for a created task to

enter its ready state. The ready state indicates that a task is not waiting for any resources

other than the CPU. Depending on different scheduling algorithms, one task in the ready

state can be executed and enter its running state. Only one task per processor can be in

the running state at any instant of time: it is the task currently using the processor. If a

task is blocked due to the unavailability of resources other than the CPU, it is placed in

the waiting state. Figure 2.3 shows the task state transition in real-time operating

systems.

www.manaraa.com

10

Wait semaphore, message queue, etc
Activate / Resume

Create

Suspend Ready Waiting

Suspend Get semaphore, message queue, etc

CPU ready

Suspend Wait semaphore, message queue, etc

Running

Figure 2.3: Task state transition

Scheduling

Multitasking in real-time operating systems requires a scheduling algorithm to

allocate the CPU to ready tasks. The main purpose of scheduling real-time tasks is to

guarantee satisfaction of temporal constraints such as deadline, release time, etc. There

are two basic types of scheduling mechanisms for real-time tasks: non-preemptive

scheduling and preemptive scheduling [7], In non-preemptive scheduling, once a task has

started executing, it completes its execution without interruption. The main advantage of

non-preemptive scheduling is that it has less scheduling overhead because of less

occurrence of context switching. However, it offers lower schedulability. Conversely, in

preemptive scheduling, a task's execution can be preempted by higher priority tasks. At

any point of time, the highest priority ready task is executing. Once all the higher priority

ready tasks finish their execution, the preempted task can be resumed. Compared to

non-preemptive scheduling, preemptive scheduling can provide a higher degree of

schedulability by meeting deadlines of higher priority tasks first. The disadvantage of

preemptive scheduling is that it requires higher scheduling overhead due to a greater

level of context switching.

Interprocess Communication

Communication is a central component in any operating system. Co-operating

www.manaraa.com

11

tasks (processes or threads) often communicate and synchronize. The execution of one

particular task can affect another task or tasks by communication. As listed below, there

are generally several types of interprocess communication (IPC) in real-time operating

systems:

i. Shared Data Structure - The most obvious way for tasks to communicate is by

accessing shared data structures. The instances of shared data structures

include global variables, linear buffers, ring buffers, linked lists, and pointers,

etc. Interprocess communication using a shared data structure is shown in

Figure 2.4.

ii. Message Queue - Message queues allow a variable number of messages, each

of variable length, to be queued. Tasks and interrupt service routines (ISR)

can send messages to a message queue, and receive messages from a message

queue. Interprocess communication using a message queue is shown in Figure

2.5.

iii. Signal - Signals are more appropriate for error and exception handling than as

a general-purpose interprocess communication mechanism. Any task or ISR

can raise a signal for a particular task. The task being signaled immediately

suspends its current thread of execution and executes the task-specified signal

handler routine the next time it is scheduled to run. The signal handler is

invoked even if the task is blocked.

iv. Others - Some other communication mechanisms may exist in different

real-time operating systems. Pipes, which are virtual I/O devices, provide an

alternative interface to the message queue facility that goes through the I/O

system. Socket is a basic network interprocess communication mechanism in

which data is send from one socket to another across the network. Remote

procedure calls (RFC) is a facility that allows a process on one machine to

call a procedure that is executed by another process on either the same

machine or a remote machine.

www.manaraa.com

12

Memory

Task 1

Access Shared

^ Data / Access Shared

Data
Task n

Task 2

Shared Data

Figure 2.4: Interprocess communication via a shared data structure

Send Message

Queue
Receive

Task 1 Task 2

Message

Queue Receive Send

Figure 2.5: Interprocess communication via message queues

Another use of interprocess communication mechanisms is for shared resource

mutual exclusion and task synchronization. A shared resource is a software structure that

can be used by more than one task to advance its execution. Any operating system that

supports shared resources must guarantee mutual exclusion among competing tasks.

Semaphores are the primary method for addressing the requirements of both mutual

exclusion and task synchronization. Semaphores provide mutual exclusion by

interlocking access to shared resources. For synchronization, semaphores coordinate a

task's execution with external events.

Interrupt

Another key facility in real-time operating systems is interrupt handling.

www.manaraa.com

13

Interrupts are the usual mechanism for informing a system of critical external events. For

the fastest possible response to interrupts, many real-time operating systems use a special

context for Interrupt service routine (ISR) outside of any other task's context. Thus

interrupt handling involves no task context switch and ISRs can be executed immediately

when interrupts occur.

In this section, we first introduced real-time systems and then discussed the main

components and features in real-time operating systems. As we have seen, real-time

operating systems can provide efficient mechanisms and services for real-time

scheduling and resource management. They are important components in embedded

real-time systems design.

2.1.3 Distributed Real-Time Operating Systems

The demand for distributed or parallel hardware architectures in embedded

real-time systems is due mainly to the fact that applications sometimes require more

computational power than a single processor can offer [8], Similar to real-time operating

system (RTOS) kernels used for years as an industry standard in uniprocessor systems,

distributed real-time operating systems can be used in a multiprocessor environment to

provide high-level procedures to dynamically schedule tasks and manage resources at

run-time.

Compared to conventional real-time operating systems for single processor

systems, several central issues that describe almost all additional constructs in a

distributed real-time operating system are presented in the following part of this section.

Multiprocessor Scheduling

The central problem in multiprocessor scheduling is to determine when and on

which processor a given task is to be executed. This can be done either statically or

dynamically. Static algorithms determine a priori the assignment of tasks to processors

and the time at which each task starts execution [9], The main advantage of static

www.manaraa.com

14

scheduling is that all tasks' deadlines will be guaranteed if a feasible schedule is found.

In dynamic scheduling, on the other hand, when a new task arrives, the scheduler

dynamically determines the feasibility of scheduling the task without jeopardizing the

guarantees that have been provided for previously scheduled tasks [9], Compared to

static scheduling, dynamic scheduling offers higher flexibility and is better at adapting to

runtime changes such as aperiodic tasks.

As described in [8], a multiprocessor scheduling procedure in distributed

real-time operating systems can be described as having three phases:

i. Allocation - the assignment of tasks and resources to appropriate nodes or

processors in the system.

ii. Scheduling - ordering the execution of tasks and network communication

such that timing constraints are met and consistency of recourses is

maintained.

iii. Dispatching - executing the tasks in conformance with the scheduler's

decisions.

There are many multiprocessor scheduling algorithms for both static and dynamic

scheduling. More details about these algorithms can be found in [8] and [9],

Memory Management in Multiprocessor Systems

Three primary types of memory systems are most commonly used in

multiprocessor systems:

i. Uniform Memory Access (UMA) - In UMA architectures, memory access

times to the whole address space are equal for all processes. A common

design technique for such systems is one in which all processors are

connected to a bus, with a global shared memory connected to the same bus.

ii. Non-Uniform Memory Access (NUMA) -NUMA systems also offer a single

shared address space visible to all processors, but access times to the different

memory regions differs for each processor. A common design technique in

this type of system is to use processor boards with on-board memory modules

www.manaraa.com

15

attached to a shared bus.

iii. No Remote Access System (NORMA) - NORMA architectures do not offer a

global shared address space. Each processor accesses only its own address

space. Typically, these architectures, often referred to as clusters, consist of

loosely-coupled independent computers connected through Local Area

network (LAN) technologies.

Memory management of real-time operating system kernels is usually simple and

primitive. Typical conventional (not real-time) operating systems mechanisms such as

virtual memory, dynamic allocation and de-allocation, are avoided in real-time operating

systems, since these are considered to be dangerous and unreliable features. In NORMA

architecture, each processing element manages its own local memory as a single

processor system. In UMA and NUMA systems, distributed real-time operating systems

are responsible for providing management for the shared memory that is visible to all

processors.

Interprocess Communication and Synchronization

Generally there are two types of interprocess communication (IPC) in distributed

RTOS:

i. Message Passing - different processors communicate with each other by

sending/receiving messages. This method is typically associated with

distributed memory multiprocessors or distributed multicomputers (NORMA),

such as in a network of workstations.

ii. Shared Memory - different processors communicate with each other by

reading/writing data from/to shared memories. This method is typically

associated with tightly-coupled shared memory multiprocessors (UMA,

NUMA).

Distributed RTOS interprocess communication mechanisms are similar to those

used in uniprocessor real-time operating systems in that shared data structures and

message queues are used. The main difference is that in uniprocessor real-time operating

www.manaraa.com

16

systems, shared data structures and message queues are only visible for multiple tasks

located in a single processor. Conversely, shared memory and messages used in

distributed operating systems can be accessed by tasks allocated to different processors.

Distributed Mutual Exclusion

In multiprocessor systems, when two or more tasks in different processors

attempt to simultaneously access shared resources, distributed mutual exclusion must be

provided by distributed real-time operating systems. Distributed mutual exclusion can be

used to ensure the integrity of shared resources by serializing concurrent access from

various sites. In general, there are two basic types of distributed mutual exclusion:

assertion-based and token-based. In assertion-based distributed mutual exclusion, when a

site tries to access a shared resource, two or more successive rounds of message

exchanges are required among all sites to check for availability of the shared resource.

The site can successfully enter the shared resource only if the local assertion variable is

true. In token-based distributed mutual exclusion, each shared resource has a token that is

used to control access to it. A site can enter the shared resource only if it exclusively

possesses the token.

The requirements of distributed mutual exclusion algorithms include mutual

exclusion, freedom from deadlock, freedom from starvation, fairness, and fault tolerance.

Many assertion-based and token-based distributed mutual exclusion algorithms can be

found in [7],

2.2 System Level Design Language

2.2.1 Overview

System level design is a multi-stage process in which the system specification is

gradually refined from an abstract idea down to an actual implementation [2], In order to

support different approaches in system level design, system level design languages

www.manaraa.com

17

should in general have the following two essential attributes:

First, system level design languages should support defining and modeling

systems at various levels of abstraction. In a top-down methodology such as in SpecC

and SystemC, a system level design begins with a highly-abstracted specification, which

is purely functional without any implementation details. The designers then refine the

system model to gradually reveal more details about the implementation with each step

representing a different layer of abstraction. Second, the system model at each layer of

abstraction can be simulated, tested, and debugged, which allows designers to validate

the system functionality at each design stage.

Such a model is referred to as a model of computation. SpecC refinement

methodology has four models of computation: the specification model, the architecture

model, the communication model, and the implementation model, each representing a

layer of abstraction in the design hierarchy. SystemC consists of five models of

computation that can be applied to a top-down system level design methodology. These

five models of computation are the untimed functional model, the timed functional model,

the transaction-level model, the behavior-level model, and the register-transfer model.

Figure 2.6 shows the hierarchy of the models of computation in SpecC and SystemC.

More details of each model of computation in SpecC and SystemC can be found in [4],

[10], and [11].

www.manaraa.com

18

Specification
Model

Architecture
Model

Communication
Model

Implementation
Model

Higher Abstraction

Less Accuracy

Lower Abstraction

More Accuracy

Untimed Functional
Model

Timed Functional
Model

Transaction-level
Model

Behavioral Hardware
Model

Register-transfer Level
Model

(a) SpecC (b) SystemC

Figure 2.6: Models of computation in SpecC and SystemC

Several general requirements of system level design languages are discussed in

[12]. A system level design language can be evaluated in terms of fulfillment of these

requirements. These requirements are listed as follows.

. Analyzability: System level design languages should have the ability to

analyze system models to establish their characteristics at all the levels of

abstraction. SpecC, for example, supports such an analysis feature by

profiling/estimation.

. Explorability: The syntax and semantics of system level design languages

should explicitly specify the characteristics of system models at any level of

abstraction. This gives the designers enhanced latitude in making

implementation decisions. SpecC, for example, has par and pipe constructs

for modeling parallelism and pipelined executions.

. Reflnability: The exploration tools should allow specification of design

www.manaraa.com

19

decisions taken in an explicit format. This allows unambiguous refinement of

the model using refinement tools or through manual refinement. Also, the

modeling styles of the model to be refined and the resulting model after

refinement should be consistent.

. Validability: Models written in system level design languages should capable

of validation at all the levels of abstraction. Both SpecC and SystemC allow

validation by simulation.

2.2.2 SpecC Language

SpecC language is a system level design language developed at the University of

California, Irvine. The first version of SpecC and its codesign methodology were

introduced in late 1990s. Built on top of the ANSI-C programming language, SpecC

language supports concepts essential for embedded systems design, including behavioral

and structural hierarchy, concurrency, communication, synchronization, state transitions,

exception handling, and timing [13]. In the remainder of this section, an overview of the

main modeling components used in SpecC language is presented.

Behaviors

A SpecC behavior is an object for the specification of active functionality [14]. In

general, behaviors are used to encapsulate computations. There are two types of

behaviors: composite behaviors and leaf behaviors. A behavior is called a composite

behavior if it contains instantiations of its child behaviors. Conversely, a leaf behavior is

a behavior that describes an algorithmic program and contains no instantiations of other

behaviors.

Syntactically, a behavior definition is begun with keyword behavior. Atypical

behavior consists of a set of ports, a set of local variables and methods, and a mandatory

main function. Ports of behaviors allow for communication with other behaviors. The

local variables and methods in a behavior have private attributes and can only be

www.manaraa.com

20

accessed and called within the behavior itself. The main function of a behavior is the

only public function and is the root of the behaviors execution. It is called whenever an

instantiated behavior is executed and its completion determines the completion of the

behavior [14]. If the behavior is a composite behavior, a set of child behavior

instantiations is included as well.

Figure 2.7 shows an example of a leaf behavior definition and its block diagram.

In this example, behavior "task" has an input port pi, an output port p2, a local variable

a and a local function init. The init function initializes the variable a. The main

function defines that the functionality of the behavior is to read the input data from port

pi, increment it by the value of a, and send the result through output port p2.

Behavior task(in int pi, out int p2)
{

int a ;

void init(void)
{

a = 1 ;

}

void main(void)
{

init () ;
p2 = pi + a;

task init()

};
}

Figure 2.7: An example of leaf behavior in SpecC

In addition to components in leaf behaviors, composite behaviors may also have

instances of their child behaviors. A child behavior of a composite behavior may be a leaf

behavior or another composite behavior. In the main function of the composite behavior,

the execution of a child behavior is initiated by making a function call to the child's

main function. As shown in Figure 2.8, there are three types of execution sequences

supported by SpecC language: sequential, parallel, and pipelined. In sequential execution,

the default execution sequence in SpecC, one behavior starts its execution when the

previous behavior finished. SpecC also supports concurrent execution for multiple

www.manaraa.com

21

behaviors by using a par statement or pipelined execution by using a pipe statement.

Sequential Parallel Pipelined

X

Y

X X

X
Y

Z

behavior a behavior a behavior a

void main(void)
{

} ;

X.main()
Y.main()
Z.main()

void main(void)
{

par {
X.main()
Y.main()
Z.main()

}

void main(void)
{

pipe {
X.main()
Y.mainO
Z.main()

} ;
}

}

Figure 2.8: Execution sequences in SpecC

Channels and Interfaces

A SpecC channel is an object designed for the specification of complex

communication [14]. In general, a channel encapsulates the communication protocol of a

communication bus. A channel can be considered to be a passive behavior. The variables

and methods inside the channel are used to define the communication behaviors in the

system. The channel is accessed by calling its interfaces during communication. The

interface determines the set of public methods provided by the channel. It serves as a

prototype of the communication protocols and is available to be used by behaviors during

their communication.

www.manaraa.com

22

Syntactically, a channel is specified by use of a keyword channel. A channel

definition typically contains a set of private local variables and methods, and its public

interfaces. An interface is specified by use of keyword interface. Figure 2.9 shows

an example of SpecC code describing channel and interface.

interface I
{

};

void send(int X);
int receive(void);

channel C implements I
{

int data;

void send(int X)
{

data = X;

int receive(void)
{

return(data);

};

behavior A(in int pi, I intfl)
{

void main(void)
{

if (pi > 0)
intfl.send(pi);

else
intfl.send(0) ;

};
}

behavior B(I intf2, out int p2)
{

void main(void)
{

p2 = intf2.receive();

};
}

behavior AB (in int p_in, out int p_out)
{

C cl;
A al (p_in, cl) ;
B bl(cl, p_out);

void main(void)
{

al.main();
bl.main();

}
};

Figure 2.9: An example of channel and interface in SpecC

www.manaraa.com

23

As we can see in the code, this example consists of one interface I, one channel C

and three behaviors A, B, and AB. Channel C provides a simple communication protocol

via an encapsulated integer variable data. The interface I, which the channel

implements, contains the declarations of two public methods send and receive. The

composite behavior AB contains two instances of its child behaviors al and bl. These

two behaviors are to execute concurrently by using a par statement and to communicate

via channel C. The ports type of the behavior is defined explicitly. If a port is used to

connect to a channel, an interface is specified as the port type in the behavior definition,

such as intfl and intf 2.

Synchronization

Synchronization is used to control cooperation among concurrent executing

behaviors. In SpecC, synchronization is provided by using the build-in data type - event.

Events can be instantiated inside behaviors or channels and bound to ports like any other

data type. In order to specify synchronization, events are used as the arguments of wait

and notify statements. As described in [14], the wait statement suspends the current

behavior from execution until one of the events specified with the wait statement is

triggered by another behavior at which point execution of the waiting behavior resumes.

The notify statement triggers all specified events so that all behaviors waiting on one

of these events can resume their execution. If no behavior is waiting on the triggered

events at the time of the notify statement, the notification is ignored. Figure 2.10

shows an example of using event in SpecC program.

www.manaraa.com

24

behavior a(out event el)
{

int data;
void main(void)
{

data++;
notify(el);

}
};

behavior b(in event el)
{

void main(void)
{

wait (el) ;
printf("Done.");

}
};

Figure 2.10: An example of event in SpecC

Timing

In a SpecC program, since all other statements are executed in zero time, a

wait for statement is provided to model execution delays during simulations. The

wait for statement has a single integer argument which refers to the number of time

units (nanoseconds) for which a behavior should supposed to suspend execution. Figure

2.11 shows an example on using waitfor statements in a behavior.

behavior task
{

void main(void)
{

// code block 1
waitfor(30);

// code block 2
waitfor (20) ;

}
};

Figure 2.11: An example of using waitfor statement in SpecC

This section has presented an overview of SpecC language covering several basic

components used in SpecC programming. Many more details about the history, features,

syntax, and semantics of SpecC language can be found in [4], [13], and [14].

www.manaraa.com

25

As we can see, SpecC language meets the requirements of system level design

languages discussed in section 2.2.1. It is widely used in the system level designs of

embedded systems for both industrial and academic purpose.

www.manaraa.com

26

3. RTOS MODELING AND REFINEMENT IN

SPECC

In this chapter, the methodology of RTOS modeling and refinement in system

level design is presented as follows. In section 3.1, an overview of the System-on-Chip

design environment (SCE) is presented. Next the SpecC RTOS model and the OS

refinement methodology are introduced in section 3.2 and 3.3 respectively. Finally, a

demonstration of RTOS modeling and refinement process in the SCE environment is

described in section 3.4.

3.1 SCE Environment

The System-on-Chip design environment (SCE) is a system level design

environment developed at the University of California, Irvine. The SCE environment

consists of a set of tools and user interfaces to help designers refine a functional system

specification to its accurate implementation with minimal effort.

The main SCE graphic user interface (GUI) contains three windows, namely, the

"project management" window, the "design management" window, and the "logging"

window, a set of toolbars, and various menu options. Each window maintains different

information about the open project during system level design flow. The toolbars and

menu options provide tools, services, and management for editing, refining, compiling,

simulating, etc. For example, the Synthesis menu provides for launching the various

refinement tools and making synthesis decisions, such as those frequently used in the

demonstration described in section 3.4.

As described in [15], the SCE environment consists of four levels of model

abstraction, namely, specification, architecture, communication, and implementation

models. Consequently, there are three refinement steps: architecture refinement,

communication refinement, and hardware/software (HW/SW) refinement. These

www.manaraa.com

27

refinement steps are performed in top-down order beginning with a top-most abstract

specification model. Figure 3.1 below shows the refinement procedures and task flow for

system design with SCE.

Functional Specification
Model Untimed

untimed

Structural
Timed

Architecture
Model

timed

Bus-functional
timed

Communication
Model

cycle
accurate

Implementation
Model Cycle-accurate

Architecture refinement

Architecture refinement

Architecture refinement

OS Refinement
(RTOS Insertion)

Architecture
Exploration

C ommunication
Synthesis

Specification
Analysis

Custom HW
generation

SW code
generation

System level
Design

(a) Refinement Procedure (b) Task Flow

Figure 3.1: Refinement procedure and task flow with SCE

The specification model is an untimed functional model. It describes only the

desired system behaviors and has no implementation details or notion of time.

Architecture refinement transforms this specification model to an architecture model by

partitioning the system behaviors and mapping these partitions onto the selected

components. Thus, the architecture model defines the structure of system architecture,

including estimated execution times for the behaviors of each component. The next step,

communication refinement, selects a set of system busses and protocols and then maps

the communication functionality between components onto the system busses.

Communication refinement creates the bus-functional communication model, which

www.manaraa.com

28

reflects the system architecture consisting of busses and is timed in both computation and

communication. The final step is the HW/SW refinement which transforms the

communication model to an implementation model. The implementation model is a

cycle-accurate structural description consisting of an RTL model for the hardware

components and instruction-set-specific assembly code for the processors.

This section has presented an overview of the SCE environment. The main

purpose of the SCE environment is to assist the designers in facilitating the system level

design flow efficiently by providing an easy-to-use environment for modeling, synthesis,

and validation. Many more details about the SCE environment can be found in [15]. The

SCE environment is the main design environment used in this thesis.

3.2 SpecC RTOS Model

System level design is widely used to refine systems from abstract specifications

to actual implementations by defining and modeling systems at various levels of

abstraction. On the other hand, real-time operating systems become an increasingly

important component in today's embedded systems implementation. Therefore, an

abstract RTOS model which contains the RTOS runtime behavior is needed in system

level synthesis to assist designers in evaluating the system design at the higher levels of

abstraction.

In [2], a RTOS model is developed on top of the SpecC system level design

language. The SpecC RTOS model provides an abstraction of the key features found in

modern RTOS like task management, real-time scheduling, preemption, task

synchronization, and interrupt handling. As shown in Figure 3.2, the RTOS model is

implemented in the form of SpecC channels. The interface of the RTOS channel can be

classified into four categories of services: operating system management, task

management, event handling, and time modeling.

www.manaraa.com

29

typedef int proc;
typedef unsigned long long int sim_time;

interface OSAPI
{

/* OS management */
void init (void) ;
void start(void);

/* task management */
proc task_create(char *name, int type,

sim_time period, sim_time wcet) ;
void task_activate(proc tid);
void task_sleep(void);
void task_resume(proc tid);
void task_terminate(void);
void task_endcycle(void);
void task_kill(proc tid);
proc par_start(void);
void par_end(proc p);

/* event handling */

evt event_new(void);
void event_del(evt e);
void event_wait(evt e);
void event_notify(evt e);

/* time modeling */

void time_wait(sim_time nsec);
} ;

Figure 3.2: Interface of the SpecC RTOS model

Operating system management mainly deals with initialization of the RTOS

kernel when the system starts. Two procedures, init and start, initialize the relevant data

structures and start the multi-task scheduling. Task management is the main function of

the RTOS model. It provides management for task creation, termination, suspension and

activation via different procedures, such as task create, task activate, task terminate,

task kill, task sleep, task resume, etc. For preemptive multi-task scheduling, two special

procedures, par start and par end, are used to suspend the calling task for running its

child task and to resume the calling task's execution when its child tasks finish. In

modeling of periodic tasks, task endcycle notifies the kernel that a periodic task has

finished its execution in the current cycle. System calls for event handling re-implement

SpecC events with RTOS events, event wait and event notify replace the SpecC

primitives for event wait and notify. The last component in the RTOS interface is time

modeling, used to model delays during simulation. In the RTOS model, the SpecC delay

www.manaraa.com

30

primitives, such as waitfor, are replaced by time wait calls.

3.3 OS Refinement Methodology

In this section, we will illustrate the OS refinement rules and steps via some

sample examples. OS refinement inserts the RTOS model into the system architecture

model and creates a scheduled model in which task execution is dynamically scheduled

by the selected scheduling algorithm. Based on the discussion in [2], the OS refinement

methodology is summarized in the subsections below.

3.3.1 Inserting Timing Annotations

As discussed in the previous chapter, during the system synthesis, the concept of

time is introduced into the architecture model after architecture refinement by annotating

delays. In the architecture model, the main purpose of annotating delays is to model the

average or worst-case execution times of corresponding behaviors on the target

components. In the scheduled model, these timing annotations will also serve as

constraints for tasks scheduling.

In SpecC programs, the waitfor statement is used to model the execution delay

of each behavior during simulation. Usually a behavior can be divided into several basic

functional blocks. Therefore, a waitfor statement is inserted at the end of each basic

block to represent the execution delay of code inside the block. During the OS

refinement, the RTOS model time_wait calls replace the SpecC waitfor statements

to model the delay of codes in the block. Alternatively, during task execution, the context

switch may only happen inside the time_wait calls. Thus, tasks can only be

preempted at the boundaries of the basis blocks. This assumption is applicable for all the

scheduling algorithms supported in the RTOS model.

www.manaraa.com

31

3.3.2 Task Refinement

During the task refinement, behaviors in the architecture model will be converted

into RTOS-based tasks in the scheduled model. The conversion processes of leaf

behaviors and composite behaviors are different. Leaf behaviors can be directly

converted into tasks. During such conversion, an os_task_create method is added

for creating the task. Each created task has its own task ID. The body of the task in its

main function is enclosed in a pair of task_activate and task_terminate calls.

Thus, the RTOS model can control task activation and termination. Figure 3.3 shows an

example of converting a leaf behavior to a task. An aperiodic task B is created with

priority equal to zero.

behavior B
{

void main(void)
{

// code block 1
waitfor(50) ;

// code block 2
Waitfor (10) ;

}
};

behavior task_B(OSAPI os)
{

int tid;
void os task create(void)

tid = os.task create ("B", APERIODIC, 0, 500)
}
void main(void)
{

os.task_activate(tid);

// code block 1
os.time_wait(50);
// code block 2
os.time wait(10);

os.task terminate()

(a) Behavior in

Unscheduled Model

(b) Task in

Scheduled Model

Figure 3.3: Task refinement for a leaf behavior

For composite behaviors, the conversion involves the dynamic creation of child

tasks within a parent task. As in the example shown in Figure 3.4, the par statement in a

composite task is refined to fork and join the child tasks in the execution of the parent

task. The parent task creates its child tasks by calling their os_task_create

www.manaraa.com

32

functions. Then the parent task calls par_start to suspend its own execution and start

the parallel execution of its child tasks in the par statement. After the child tasks finish

their execution and the par statement exits, par_end is called to resume the execution

of the parent task.

/* two parallel behaviors */
par
{

bl.main();
b2.main();

task_bl.os_task_create();
task_b2.os_task_create();

/* two parallel tasks */
os_par_id = os,par_start()
par
{

task_bl.main();
task_b2.main();

}
os.par end(os par id);

(a) Behavior in

Unscheduled Model

(b) Task in

Scheduled Model

Figure 3.4: Task refinement for a composite behavior

3.3.3 Synchronization Refinement

In the system specification and architecture models, synchronization is

implemented using SpecC events with the wait and notify primitives.

Synchronization refinement replaces all events and event-related primitives with

corresponding event handling routines of the RTOS model [2], RTOS events can be

created and deleted by event_new and event_del calls. Therefore, in the scheduled

model, all SpecC event instances are replaced with RTOS events and all SpecC wait

and notify statements are replaced with RTOS event_wait and event_notify

calls. An example of such synchronization refinement is shown in Figure 3.5.

www.manaraa.com

33

channel C channel C(OSAPI os)

event start, done ;
void send(. . .)

evt start, done ;
void send(. . .)

notify(start);
wait(done);

os.event_notify(start);
os.event_wait(done);

}; };

(a) SpecC Events in

Unscheduled Model

(b) RTOS Events in

Scheduled Model

Figure 3.5: Synchronization refinement example

3.3.4 Task Scheduling

After task refinement and synchronization refinement, both task management and

synchronization are implemented using the system calls of the RTOS model. Thus, the

dynamic system behavior is completely controlled by the RTOS model layer [2], The

next step will be implementation of task scheduling.

The RTOS model library provides services for task management and scheduling.

As we know in the unscheduled system model, behaviors can be executed truly in

parallel by using the par statement. But, in the scheduled model, tasks can only be

executed in an interleaved way. Thus, in order to model dynamic task scheduling, the

execution of tasks must be serialized first. The RTOS model ensures that only one task

can be executed on the simulation kernel at any point of time. This is achieved by

blocking all other tasks on SpecC events, except the current task. During simulation, the

RTOS model provides a scheduler to maintain task scheduling. The scheduler is invoked

if any task state is changed in the system by a RTOS call. Each time the scheduler is

invoked, it will select a task based on the current scheduling algorithm and task priorities

from the ready queue, and dispatch it by releasing its SpecC event. Then the selected task

becomes the current task executing on the simulation kernel, with all other tasks blocked

by their SpecC events.

www.manaraa.com

34

3.3.5 Summary

In summary, OS refinement transforms the unscheduled system architecture

model to the RTOS-based scheduled model in which the RTOS model can provide the

mechanisms for task management, dynamic task scheduling, communication and

synchronization, etc. Thus, the simulation results of the scheduled model can be used to

reflect RTOS behavior and to accurately evaluate a system design at the higher levels of

abstraction.

3.4 Demonstration of OS Refinement in SCE

As discussed in section 3.1, the SCE environment provides tools and interfaces to

assist designers in modeling and refining system designs at various levels of abstraction.

Like other refinement steps, OS refinement can be done automatically by selecting

appropriate tools and options from the SCE environment. This section shows an example

to demonstrate the design flow of refining the system specification model to the

RTOS-based scheduled model.

3.4.1 System Specification Model

The SCE chart of the specification model for this example is shown in Figure 3.6.

The task task_set is the top-level behavior, which involves two parallel behaviors

procl and stil. Behavior procl has two child behaviors, body and isr. The main

purpose of behavior isr is to function as an interrupt service routine. Behavior body

has three concurrent child behaviors to, tl and t2, each behavior having two basic

execution blocks. The waitfor statement is used inside each basic block to model the

execution delay of the behaviors. Behavior tl is waiting on semaphore semi to start its

execution, and behavior t2 will wait on semaphore sem2 to execute its second block.

Behavior stil is used to generate interruptions. There are two interrupts el and e2.

Each of these interrupts will evoke the interrupt service routine isr, which will release

www.manaraa.com

35

semaphore semi and sem2 to make tl and t2 continue execution. The concurrent leaf

behaviors in the specification model can be executed truly in parallel by using par

statements. Figure 3.7 shows the simulation result of the behavior execution status. We

can see that during time 0 - 10, 20 - 50, and 50 - 80, at least two behaviors are executed

concurrently.

Tasksel

procl

stil

body's

Figure 3.6: SCE chart of the system specification model

www.manaraa.com

36

interrupt el
release semi

interrupt e2
release sem2

to

tl

t2

I I

10 20 50 80 90

^simulation
time

Figure 3.7: Behavior execution result in the system specification model

3.4.2 System Architecture Model

As discussed in section 3.8, the architecture refinement creates the architecture

model by selecting processing elements (PE) and mapping the different partitions of the

system behaviors onto each PE. In this example, we select two processing elements: a

Motorola DSP 56600 and a standard custom hardware element, and name them DSP and

HW respectively. The behavior procl is mapped onto the DSP and stil is mapped

onto HW. Figure 3.8 shows the SCE chart of the architecture model. As we can see in the

top-level behavior task_set, two PE relevant sub-behaviors, DSP and HW, are

constructed and inserted during architecture refinement. Like the specification model, all

the concurrent leaf behaviors to, tl and t2 can be executed truly in parallel. The

simulation result of the behavior execution status is shown in Figure 3.9.

www.manaraa.com

37

r
0_

B

procl^

bofjyA

HW

"sirTX

Figure 3.8: SCE chart of the system architecture model

interrupt el
release semi

to

tl

t2

10 20

interrupt e2
release sem2

I I

50 80 90

^simulation
time

Figure 3.9: Behavior execution result in the system architecture model

3.4.3 System Scheduled Model

The next step of system level synthesis is the OS refinement, which includes

inserting the RTOS model into the system and dynamically scheduling task execution

www.manaraa.com

38

according to the selected scheduling algorithms provided by the RTOS services. During

the OS refinement, the RTOS model implementing the RTOS interface is instantiated

inside each PE in the form of a SpecC channel, as shown in Figure 3.10. SpecC

behaviors in the architecture model are converted into RTOS-based tasks. SpecC

waitfor statements are replaced by RTOS time_wait calls to model task' execution

delay. The SCE environment provides convenient tools to assist the users in selecting

different scheduling algorithms on each software component. In this example, we use a

priority-based scheduling algorithm on DSP. The priority of each task is specified inside

its os_task_create method, while here the priorities of task to, tl and t2 are 3, 2,

and 1, respectively, with to having the lowest priority and t2 having the highest priority.

Task execution on each PE is serialized in an interleaved way based on the scheduling

algorithms and tasks priorities. The simulation result is shown in Figure 3.11.

www.manaraa.com

39

"B-

DSP

DSP'S

EBB

procTN

boïïyN

I '1 O:

i
i

os_resK_iW

0S_r«SKjNir

6

Figure 3.10: SCE chart of the system scheduled model

interrupt el
release semi

interrupt e2
release sem2

to

tl

t2

I I

10 20 30 50 60 90 130 160

^simulation
time

Figure 3.11: Task execution result in the system scheduled model

www.manaraa.com

40

4. DRTOS MODELING AND REFINEMENT IN

SPECC

This chapter will present the methodology of modeling and refining distributed

real-time operating system (DRTOS) during system-level synthesis. Our DRTOS model

is an extension of the RTOS model introduced in section 3.2, including a global

synchronizer and a global scheduler. We named it as ERTOS-SS, for extended RTOS

with global scheduling and synchronization. Like the RTOS model, the ERTOS-SS

DRTOS model is also built on the SpecC system-level design language and can be easily

integrated into the existing system-level design flow to accurately reflect DRTOS

runtime behavior.

4.1 Summary of DRTOS Services

The first step in developing a DRTOS model is to determine the functionality

which should be implemented in the model. In order to explicitly indicate what needs to

be done, a summary of the basic services based on [7] and [8] in various commercial or

research DRTOS kernels is listed below:

. Multiprocessor Task Scheduling - Multitask scheduling on multiprocessor

systems provides mechanisms for task assignment, task scheduling, resource

allocation, etc.

. Load Balancing - During tasks assignment, load balancing for all Processing

Elements (PEs) must be fulfilled in order to best utilize system resources and

maximize system performance.

. Intra-processor Communication (IPC) - Intra-processor communication

provides mechanisms for sharing data among different processes executed on

the same PE.

. Inter-processor Communication (IPC) - On the contrary to intra-processor

www.manaraa.com

41

communication, inter-processor communication provides capability for

sending and receiving shared data among different tasks physically located on

different PEs.

. Distributed Synchronization - Another of the basic services provided by

DRTOS kernels is distributed synchronization among cooperative tasks

running in parallel on different PEs.

. Distributed Mutual Exclusion - Shared resources in multiprocessor systems

must be protected by distributed mutual exclusion mechanisms. Concurrent

accesses to shared sources from multiple PEs will be serialized by distributed

mutual exclusion to secure the integrity of shared resources.

4.2 DRTOS Model Implementation Guidelines

In system level design, an abstract DRTOS model is required to perform the

services listed above and to reflect DRTOS runtime behavior during system level

synthesis. The methods for achieving these services in different research or commercial

DRTOS kernels may vary, but at the higher level of abstraction, these services should be

implemented using system-level design approaches provided in system level design

languages and refinement methodology.

Based on the services listed in the previous section, the DRTOS model can be

separated into three basic modules: allocator, synchronizer, and scheduler. The allocator

models the mechanism of task allocation and load balancing. The synchronizer is used to

model task synchronization, as well as to provide both intra- and inter-processor

communications among tasks. The scheduler provides the capability to model task

management and task scheduling.

4.2.1 Allocator

The main purpose of the DRTOS allocator is to provide the function of task and

resource allocation for online multiprocessor task scheduling algorithms, as well as

www.manaraa.com

42

maintain load balancing. In [8], the author indicated that multiprocessor architectures

combined with real-time scheduling represent a delicate problem and an ongoing

research area. It is clearly easier for an off-line scheduler to be optimal. Thus, in order to

simplify the scheduling algorithms, the following assumption is used throughout this

research work: task allocation decisions have been made by system designers before

runtime. With this assumption, task allocation and load balancing can be accomplished

during architecture refinement by properly selecting PEs and mapping system behaviors

onto different components.

4.2.2 Synchronizer

The DRTOS synchronizer can provide services for task communication, task

synchronization, and mutual exclusion. Although communication, synchronization, and

mutual exclusion are different types of DRTOS services, all of them are required to

handle task dependency. For example suppose that two tasks tl and t2 are running in

parallel on two different processors pi and pi. If task tl needs data al computed by

task t2, the execution of task tl will be suspended until task t2 is completed, at which

point task 11 will be resumed. This example of distributed synchronization is shown in

Figure 4.1 (a). Figure 4.1 (b) shows an instance of distributed mutual exclusion. As can

be seen, task tl running on processor pi wants to access shared resource rl which is

currently exclusively locked by task t2 running on processor p2. Thus task tl must

wait until the completion of task t2 in order to execute. These examples show that task

dependency can be of various types, but at the higher levels of abstraction, we can ignore

the nature of the dependency and simply formulate an abstraction and assert that task 7\

is eligible to be released just after task Tt has finished its execution [16].

Therefore, at the higher levels of abstraction, such three types of DRTOS services

can be abstracted as managing task dependencies. To clearly distinguish different types

of task dependencies, we category them into two groups: internal task dependency and

external task dependency. Internal task dependency indicates those dependencies among

www.manaraa.com

43

tasks located on the same PE. On the contrary, external task dependency includes those

dependencies among tasks locate on different PEs. RTOS-based events and

event-handling primitives provided by the RTOS channel can be used to handle internal

task dependencies within each PE. Additionally, our DRTOS model provides a

synchronizer to manage external task dependencies. More detailed discussion on

synchronization protocol and the implementation of the DRTOS synchronizer will be

present in section 4.3.

Data al
Task tl

on processor pi
Task t2

on processor p2

Calculating al Suspended and waiting for the

result of al. Wait for the
completion of t2.

(a) Distributed Synchronization

Shared

resource s 1
Task tl

on processor pi
Task t2

on processor p2

Suspended and waiting for the Locking s 1

releasing of si. Wait for the

completion of t2.

(b) Distributed Mutual Exclusion

Figure 4.1 : Example of task dependencies

4.2.3 Scheduler

The major functionality of the DRTOS scheduler is to determine execution order

of all tasks in a system. In a multiprocessor system, tasks can be classified into two

www.manaraa.com

44

groups according to their dependencies with other tasks. If a task has no dependency with

any other task or only has internal dependencies, this task can be scheduled inside its

own PE without considering of other tasks on other PEs. Alternatively, if a task has

external dependencies, its execution order must be synchronized with other tasks located

on different PEs by a global scheduler.

As we have introduced in sections 3.2 and 3.3, the SpecC single RTOS channel

has four categories of interface: OS management, task management, event handling, and

time modeling. OS refinement inserts RTOS channels into system model to perform

RTOS services. During simulation, the RTOS channel provides a scheduler to maintain

task scheduling on each PE. Our DRTOS model is an extension of the single RTOS

model and all the interfaces provided by the RTOS channel can be reused in our DRTOS

modeling and refinement process. Therefore, the execution for those tasks without

external dependencies can be scheduled by the scheduler provided by the single RTOS

channel inside each PE.

Additionally, to determine the execution order for those tasks having external

dependencies, a global scheduler must be implemented in the DRTOS model. The main

responsibility of such a global scheduler is to adjust task execution order based on their

external dependencies. It can be considered as an auxiliary of the scheduler provided in

each RTOS channel. The implementation details of the DRTOS global scheduler will be

presented in the next section.

4.3 ERTOS-SS DRTOS Model Implementation

Based on the implementation guidelines in section 4.2, the ERTOS-SS DRTOS

model will be focused on functionality of the DRTOS synchronizer and the DRTOS

global scheduler. More implementation details about these two modules of the

ERTOS-SS DRTOS model will be presented in this section. The synchronization and

scheduling protocol will be presented first, followed by an introduction of SpecC

behaviors of the synchronizer and the global scheduler in the ERTOS-SS DRTOS model.

www.manaraa.com

45

4.3.1 Synchronization Protocol

Synchronization protocol must be used to handle task dependency in a system

model. More detailed discussion on different types of synchronization protocols can be

found in [17]. In the remainder of this section, the synchronization protocol used in the

ERTOS-SS DRTOS model will be introduced.

The DRTOS synchronizer must hold information regarding its services, such as

which tasks depend on which others. In the ERTOS-SS DRTOS model implementation,

management of task dependency is achieved by using the idea of semaphores. A more

detailed description of semaphores can be found in [6], Figure 4.2 shows an example of

using semaphores to manage task dependencies. As we can see, the dependency between

task tl and task t2 can be accomplished easily by using semaphore si.

behavior tl behavior t2
{ {

void main(void)
{

// code block 1
waitfor(20);

//wait semaphore
wait semaphore si;

// code block 2
waitfor(50);

}; };

void main(void)
{

// code block 1
waitfor(40) ;

//release semaphore
release semaphore si;

// code block 2
waitfor(30);

}

(The second execution block of taskl must be executed after the

completion of the first execution block of task2.)

Figure 4.2: Example of using semaphore to manage task dependency

In implementation of the DRTOS synchronizer, all dependencies among different

tasks can be managed by creating a set of semaphores. Each semaphore is used to handle

only one instance of task dependencies. For example, if the execution of task to depends

on a shared data dl that is calculated in task tl, a semaphore semi is needed for the

shared data dl to handle dependency between task to and tl. As another example,

three tasks t2, t3, and t4 need exclusively access a shared resource re si during their

www.manaraa.com

46

execution, while re si only allows one visitor at any point of time. In such a case, a

semaphore semi is required for the shared resource resl to manage task dependencies

between t2, t3, and t4. The number of semaphores used in the system is equal to the

total number of dependencies among all tasks in the system. Each semaphore has two

types of status: ready and locking. Ready status indicates that the semaphore is not

locked by any task and is ready to be used. Locking status indicates that the semaphore

is currently locked by a task and cannot be used by other tasks. When a semaphore is

created, its initial status is locking. Each semaphore maintains a waiting list to save

waiting tasks, and a locking list to save locked tasks. Notice that if a semaphore is in

ready status, both its waiting list and locking list must be empty. But for locking

status, a semaphore's locking list must be not empty. Since a semaphore can be

exclusively accessed and locked by only one task at any point of time, the maximum

length of its locking list equals to one. All the semaphore status and their corresponding

lists will be saved in a "semaphore status table". The status table will be updated

whenever the status of a semaphore is changed.

In the ERTOS-SS DRTOS model, the synchronizer can be seen as an event-based

process that runs whenever a message (request or release) is received from a task.

During the execution of a task, if a semaphore is required, the task will send out a

request message. If a semaphore is released, the task will send out a release

message. Each time a task issues a request or a release message, the synchronizer

will receive it. When the synchronizer receives a request message, it looks at the

semaphore status table to check the status of the required semaphore. If the status of the

required semaphore is ready, the synchronizer will change it to locking, and invoke

the DRTOS global scheduler for scheduling. If the status of the required semaphore is

locking, it means the semaphore currently is being locked by other tasks. The

synchronizer will not change the status of the required semaphore and directly invoke the

scheduler for scheduling. Alternatively, if the synchronizer receives a release message,

its reaction will depend on the status of the released semaphore as well. If the status of

the released semaphore is ready, the synchronizer will do nothing. If the status of the

www.manaraa.com

47

released semaphore is locking, the synchronizer will change it to ready and invoke

the scheduler for scheduling. Examples of operations for each scenario are shown in

Figure 4.3.

Request semi
>• Synchronizer

Check status of semi

semal

Status ready locking
Invoke Scheduler scenl

Request semi
>• Synchronizer

Check status of semi

semal

Status locking locking
Invoke Scheduler scen2

Release semi

Check status of semi

semal

Synchronizer

Status locking ready Invoke Scheduler scen3

Figure 4.3: Operations of the DRTOS synchronizer

4.3.2 Scheduling Protocol

Similar to the synchronizer, the DRTOS global scheduler is modeled as an

event-based process as well. The main responsibility of the scheduler is to manage

semaphore's waiting and locking list and to determine which task should be executed

www.manaraa.com

48

based on the current scheduling algorithm. The scheduler in the ERTOS-SS DRTOS

model can provide two scheduling mechanisms: First-In First-Out (FIFO) and

Priority-Based (PB).

Based on the synchronization protocol discussed above, there are three scenarios

that the synchronizer will invoke the global scheduler for task scheduling. The first

scenario is when the synchronizer changes status of the required semaphore from ready

to locking. At that time the request task obtains the controls of the required semaphore

and is ready to be executed. Thus, the scheduler will save the request task to the

semaphore's locking list and send a run message back to the request task to allow it

continuing its execution. The second scenario is when the status of the required

semaphore is locking. The scheduler will add the request task to the semaphore's

waiting list and send a suspend message back to the request task. In this case, the

execution of that task will be suspended to wait for further notice. Third, when the

synchronizer changes status of the released semaphore from locking to ready, the

semaphore is currently ready to be used by another task. The scheduler will remove the

release task from the semaphore's locking list and check the waiting list. It the waiting

list is empty, no further action is needed. Otherwise, the scheduler will select a task based

on the current scheduling algorithm and task priorities from the waiting list. If the current

scheduling algorithm is FIFO, the first task in the waiting list will be selected.

Alternatively, the task with highest priority will be selected for PB scheduling algorithm.

Then the scheduler will remove the selected task from the semaphore's waiting list, add it

to the locking list and send a resume message back to this task to resume its execution.

Finally, the scheduler will properly update the semaphore's waiting list to maintain the

input orders of the remaining tasks. Examples of operations for each scenario are shown

in Figure 4.4.

www.manaraa.com

49

scenl

Status of semi: ready -> locking, Request task: ti

semal

Waiting list
Send run to t i

Locking list ti

Scen2

Status of semi: locking -> locking, Request task: ti

semal

Waiting list ti
Send suspend to ti

Locking list

Scen3

Status of semi: locking -> ready, Release task: ti

semal

tk Waiting list tk
Send resume to t j

Locking list ti

Scheduler

Scheduler

Scheduler

(Selected task t j based on the current scheduling algorithm)

Figure 4.4: Operations of the DRTOS global scheduler

4.3.3 Implementation of the Synchronizer and the Global Scheduler

The synchronizer and the global scheduler in the ERTOS-SS DRTOS model are

implemented in the form of SpecC behaviors. Recall from section 2.2.2 that SpecC

behaviors are the basic unit of functionality in SpecC programs. There are two types of

www.manaraa.com

50

behaviors: composite behaviors and leaf behaviors. Leaf behaviors may have variables

and methods to define their basic functionality. Composite behaviors can have instances

of child behaviors and include their functionality by calls to the child's main method. In

contrast to SpecC channels, the execution of SpecC behaviors is proactive during system

simulation.

The high-level functional structure of the ERTOS-SS DRTOS model is shown in

Figure 4.5. In the ERTOS-SS DRTOS model implementation, the top level composite

behavior DRTOS_SERV consists of two concurrent child behaviors: DRTOS_SYNC and

DRTOS_SCHD, which functions as the DRTOS synchronizer and the global scheduler

respectively. The behavior DRTOS_SYNC provides the functionality of receiving

messages from tasks executing on each PE, updating the semaphore memory block based

on the synchronization protocol, and invoking the behavior DRTOS_SCHD through an

internal event start. The behavior DRTOS_SCHD is responsible for updating

semaphores' waiting and locking lists and sending various messages back to tasks based

on the scheduling protocol, and noting its completion to the behavior DRTOS_SYNC

through another internal event done. The processes of both behaviors DRTOS_SYNC

and DRTOS_SCHD are placed in an infinite loop and will continue to run infinitely

throughout the simulation and will always be ready to receive more messages from tasks.

www.manaraa.com

51

Semaphores
Memory Block

task ID

sema ID

sema ID

W-list

task ID

done

L-list

status

start

invoke msg

Semaphore Status

Waiting List

Locking List

Synchronizer Scheduler

Figure 4.5: Functional model of the behavior DRTOS SERV

Additionally, a channel MSG_IO is created for communication between each

processing element and the ERTOS-SS DRTOS model. It has two interfaces MSG_SEND

and MSG_RECV to provide a capability for message exchange between tasks and the

DRTOS synchronizer.

The declarations of the behavior DRTOS_SYNC, the behavior DRTOS_SCHD, and

the channel MSG 10 are shown in Figure 4.6.

www.manaraa.com

52

//data type declarations

typedef structure
{

MSG_Type msg_type;
int task_id;
int sema_id;

} MSG_Data_Struct;

//interface declarations

interface MSG_SEND;
interface MSG RECV;

//channel declarations

channel MSG_IO() implements MSG_SEND, MSG_RECV;

//behavior declarations

behavior DRTOS_SYNC
{

MSG_RECV in_msg_recv,
out event start,
in event done,
out MSG_Data_struct invoke_msg

behavior DRTOS_SCHD
{

MSG_SEND out_msg_send,
in event start,
out event done
in MSG_Data_struct invoke_msg

Figure 4.6: Declarations of behaviors and channels in the ERTOS-SS DRTOS model

4.3.3 ERTOS-SS DRTOS Model Implementation Summary

The ERTOS-SS DRTOS model implementation is focusing on the extension

services of managing various types of task dependencies. Two SpecC behaviors

DRTOS_SYNC and DRTOS_SCHD are developed to provide the ERTOS-SS DRTOS

model the capability of synchronization and global scheduling. The functionality of these

two behaviors, combined with the interface of the SpecC RTOS channel, may fully

provide DRTOS services in system-level design. The refinement rules of inserting the

www.manaraa.com

53

ERTOS-SS DRTOS model into the system architecture model during system level

synthesis will be presented in the next section.

4.4 ERTOS-SS DRTOS Refinement Methodology

Recalling the OS refinement process in section 3.3, the RTOS channel is inserted

inside each processing element to provide RTOS services to the system model. In this

section, we will begin detailed discussion of the ERTOS-SS DRTOS refinement process.

The ERTOS-SS DRTOS refinement process inserts the RTOS channels and the extension

DRTOS behaviors into the system architecture model and creates the scheduled model in

which all the DRTOS services listed in section 4.1 may be achieved.

Many refinement methodologies may be performed during system level synthesis

to move the system models to the lower level of abstraction. In [18], these refinements

are classified into three categories: structural reorganization, behavioral refinement, and

communication refinement. Structural reorganization groups refinements that modify the

hierarchical structure of the modules. Hardware/software partition, allocation and

binding belong to this category. Behavioral refinement relates to modifying task

descriptions, I/O primitives may be refined to comply with interface constraints and task

contents may be modified to comply with semantics at different levels of abstraction. For

example, when moving from the driver to the RT-level, computations executed on HW

blocks must be scheduled into clock cycles, and the SW code must be adapted to the

processor where it will be executed. This may involve adding specific system calls to the

embedded OS. Finally, communication refinements modify the topology of ports and/or

nets. Based on these three categories of refinements, the ERTOS-SS DRTOS model

refinement rules and process are outlined in the subsections below.

4.4.1 Task Allocation in Architecture Refinement

The first step in the ERTOS-SS DRTOS refinement process is the task allocation

during architecture refinement. Recall from section 2.2.1 and 3.1 that there are four

www.manaraa.com

54

system models and three refinement steps in the SpecC system level design flow.

Architecture refinement allocates the processing elements and maps the modules of the

functional specification model to these processing elements. Therefore, the ERTOS-SS

DRTOS refinement process is actually begun at architecture refinement. This architecture

partitioning process is illustrated in Figure 4.7. By properly allocating and mapping

system modules to the selected processing elements, task allocation and load balancing

can be easily accomplished.

task set

Task

Task

Task

Task

Task

PEO

Task

Figure 4.7: Partitioning and mapping tasks onto different PEs

4.4.2 Mapping DRTOS Extension Behaviors

The next refinement step is to map the DRTOS synchronizer and global scheduler

behaviors to a new processing element. With the insertion of the ERTOS-SS DRTOS

model, two extension behaviors which function as the DRTOS synchronizer and

scheduler are added to the system model. Thus, after mapping existing system modules

to selected PEs, a new PE to which the DRTOS extension behaviors will be mapped is

www.manaraa.com

55

needed, as shown in Figure 4.8.

This new processing element can be a processor, a microcontroller, a DSP, or a

custom hardware element. The main purpose of this component is to reflect behavior of

the DRTOS synchronizer and global scheduler during simulation. In the system

implementation model, these DRTOS extension behaviors along with all the relevant

functionality of the RTOS channels will be exported into the real DRTOS system calls

supported by target microprocessors.

DRTOS SCHD

DRTOS SYNC

Figure 4.8: Mapping the extension DRTOS behaviors onto a new PE

4.4.3 Inserting RTOS Channel

Another major step in the ERTOS-SS DRTOS refinement process is to insert

RTOS channel into each PE. The detailed rules and process of the RTOS refinement can

be found in section 3.3. Figure 4.9 below shows the hierarchy of the system model with

the insertion of the RTOS channels.

www.manaraa.com

56

PEO

Z N
Task

z \
Task

z

x J I) I

< RTOS >
PE1

Z N

Task Task

X J I J I y

Task PE1

< RTOS >

DRTOS

DRTOS

SCHD

DRTOS

SYNC

Figure 4.9: Insertion of RTOS channels into system model

4.4.4 Adding Semaphores and Gathering Synchronization Information

After architecture partitioning phase, all the synchronization-related information,

such as which task is on which PE or which task depends on which others, must be

generated for management of external task dependencies. A semaphore is added for each

instance of dependency. The semaphore-related data types used in the ERTOS-SS

DRTOS model implementation are shown in Figure 4.10.

www.manaraa.com

57

typedef unsigned int SEMA_Status_Type;
enum
{

S EMA_S TATU S_READY,
S EMA_S TATUS_LOCKING,

NUM_S EMA_S TATUS
};

typedef unsigned int MSG_Type;
enum
{

MSG_INIT,
MSG_RUN,
MSG_SUSPEND,
MSG_RESUME,
MSG_REQUEST,
MSG_RELEASE,

NUM_MSG_TYPE
};

typedef structure
{

int
int

} TASK_Loca_Struct;

task_id;
pe_id;

typedef structure
{

SEMA_Status_Type curr_sema_sts;
int waiting_list[50];
int locking_list[1];
TASK_Loca_Struct assoc_tasks[50] ;

} SEMA_Status_Struct;

Figure 4.10: Semaphore-related datatypes used in the ERTOS-SS DRTOS model

Each semaphore has an integer component curr_sema_sts to save its current

status during execution. Two integer arrays waiting_list and locking_list are

used to save its waiting and locking task IDs. Since a semaphore can be locked only by

one task at any point of time, the length of the locking list array is set to one. Here we

assume that the maximum number of waiting tasks for any semaphore is fifty, thus the

length of the waiting list array is set to fifty. When a semaphore is created, its initial

status is locking. A "task" called init is added into its locking list to indicate that the

semaphore is locked by initialization. Obviously its waiting list is empty. At that time if a

request message is received, the status of the semaphore will be not changed and the

request task will be added into the semaphore's waiting list. If a release message is

www.manaraa.com

58

received, the status of the semaphore will be changed from locking to ready. The

task init will be removed from the semaphore's locking list. All the semaphores' status,

along with their waiting and locking lists, will be controlled by the DRTOS synchronizer

and global scheduler behaviors during simulation. Additionally, semaphore status table

has another data type TASK_Loca_Struct to save the task location information

associated with each semaphore. Task location information can be gathered after the

architecture partitioning phase. Figure 4.11 below shows an example of task

dependencies in a multiprocessor system. Its initial semaphore status table is shown in

Table 4.1.

Shared Data

Shared Resource

resl

Figure 4.11: An example of external task dependencies

Table 4.1 : Initial semaphore status table for the example in Figure 4.11

Semaphores semal (for datai) sema2 (for resl)

Current Status locking locking

Waiting List

Task ID (empty) (empty)

Waiting List Task ID Waiting List

Locking List Task ID init init

Task Location
Information

Task ID tl t3

Task Location
Information

PE ID PEO PEO

Task Location
Information

Task ID t2 t4
Task Location
Information

PE ID PE1 PEO
Task Location
Information

Task ID t5

Task Location
Information

PE ID PE1

Task Location
Information

www.manaraa.com

59

4.4.5 Adding Distributed Synchronization and Global Scheduling

The final step in the ERTOS-SS DRTOS refinement process is to add distributed

synchronization and global scheduling by using channels and behaviors provided in the

DRTOS_SERV. Distributed synchronization and global scheduling mainly deal with

external task dependencies among different PEs and cannot be achieved using SpecC

events or RTOS-based events. To handle this aspect, the semaphore status table created in

the previous step and semaphore-related messages must be used. During the DRTOS

refinement, a hierarchical channel MSG_I0 is created and added into the system

architecture model. MSG_IO provides the communication platform between each PE and

the PE with the DRTOS model. It allows the exchange of semaphore-related messages

between tasks and the DRTOS extension behaviors. Each time when a task requests or

releases a semaphore, it sends request or release messages to the DRTOS

extension behaviors through the MSG_SEND interface of the MSG_IO channel.

Alternatively, the DRTOS extension behaviors receive these messages through the

MSG_RECV interface, processes messages, and send the response messages back to task

by calling MSG_SEND. The MSG_IO channels, along with the DRTOS synchronizer and

scheduler behaviors, can provide the ability to model DRTOS distributed synchronization

and global scheduling services in system level design.

Figure 4.12 below shows the hierarchy of the completed system scheduled model

with the insertion of the ERTOS-SS DRTOS model.

www.manaraa.com

60

PEO

z \

Tasks Tasks

X J I J I y

< RTOS

PE1

Tasks Tasks

x / x / x.

< RTOS

Task PEO

>

f \ Task PE1

>

MSG IO

MSG IO

^ DRTOS ^

DRTOS

SCHD

DRTOS

SYNC

Figure 4.12: Hierarchy of complete system model with the ERTOS-SS DRTOS model

4.4.6 Summary of the ERTOS-SS DRTOS Refinement Methodology

The following is the summary of the guidelines for the ERTOS-SS DRTOS

refinement methodology:

• Properly mapping system functional modules to selected processing elements

to fulfill task allocation requirements and maintain load balancing.

• Allocating a new processing element and mapping onto it the DRTOS

synchronizer and global scheduler behaviors.

• Inserting the RTOS channel into each processing element. This includes:

Inserting timing annotations into each behavior to model execution

delays.

Refining system behaviors to RTOS-based tasks.

Replacing SpecC events and event-related primitives with corresponding

www.manaraa.com

61

event-handling routines of the RTOS channel for intra-processor

synchronization.

Performing task scheduling with scheduling algorithms supported by the

RTOS channel.

• Adding semaphores to manage external task dependencies.

• Gathering synchronization related information for each semaphore based on

the architecture partitioning.

• Adding distributed synchronization and global scheduling by using MSG_IO

channels and DRTOS extension behaviors provided in DRTOS_SERV.

www.manaraa.com

62

5. CASE STUDY

In chapter 4, the ERTOS-SS DRTOS modeling and refinement methodology is

presented. In order to demonstrate that the ERTOS-SS DRTOS model can be easily

integrated into the existing SpecC system design flow to accurately reflect the DRTOS

runtime behavior, we will illustrate the ERTOS-SS DRTOS modeling and refinement

methodology in this chapter by analyzing an example of multitask execution on a

multiprocessor system.

5.1 Example Task Set

The example task set used in this chapter has six concurrent tasks: tl, t2, t3,

t4, t5, and t6, each with two basic execution blocks. All six tasks will be started at

time zero. Assume there are two task dependencies in this task set. One is that task 11

requires the result of a shared data datai which will be calculated when task t5

finishes its first execution block. The other is that task t4 tries to access a shared

resource resl which is currently locked by task t3 and will be released when task t3

finishes its first execution block. The summary of the task characterizations is listed in

Table 5.1.

Table 5.1: Task characterizations of the example task set

Task Start Time Execution Blocks
tl 0 Wait for result of shared data datai; 20; 30;
t2 0 30; 40;
t3 0 50; Release shared resource resl; 10;

t4 0 20; Wait to access shared resource res 1; 20;
t5 0 70; Calculate result of shared data datai; 30;
t6 0 40; 10;

www.manaraa.com

63

5.2 System Specification Model

In system specification model, each task is implemented as a leaf behavior with

SpecC waitfor statements used to model its execution blocks. All six leaf behaviors

are child behaviors of top-level composite behavior task_set. SpecC par statement is

used in composite behavior for concurrently executing its child behaviors. Task

dependencies are implemented using SpecC events with wait and notify primitives.

A high-level representation of the system specification model is shown in Figure 5.1.

behavior tl(in event evtl)
{

void main(void)
{

// wait for event
wait(evtl);
// code blockl
waitfor(20);
// code block2
waitfor(30);

};
}

behavior t5(out event evtl)
{

void main(void)
{

// code blockl
waitfor (20) ;
// notify event
notify(evtl);
// code block2
waitfor(30);

}
};

task set

evtl

behavior task set()

event evtl, evt2 ;
tl tskl(evtl);
t2 tsk2;
t3 tsk3(evt2)
t4 tsk4(evt2)
t5 tsk5(evtl)
t6 tsk6;

Void main(void)
{

par {
tskl.main(
tsk2.main(
tsk3.main(
tsk4.main(
tsk5.main(
tskô.main(

}
}

Figure 5.1: Hierarchy of the system specification model

In general, there is no notion of time in the system specification model. However,

since the main purpose of this case study is to compare task execution sequences in

different system models, we add simulation delays for each task started with the

specification model. Figure 5.2 below shows the simulation result of task execution in

the system specification model. All tasks start their execution at time 0 expect task tl,

which is waiting for event evt2. At time 20, task t4 finishes its first execution block

www.manaraa.com

64

and starts to wait for event evtl. At time 50, task t3 finishes its first execution block,

notifies event evt2, and starts its second execution block. At the same time, task t4 can

start its second execution block. At time 70, task t5 finishes its first execution block,

notifies event evtl, and starts its second execution block. At the same time, task tl can

start its execution. From the simulation result we can see that without task scheduling,

concurrent leaf behaviors can be executed truly in parallel. For example, during time 0 -

20, five tasks t2, t3, t4, t5, and t6 are executed concurrently; during time 70 - 100,

two tasks 11 and 15 are executed concurrently.

ti

t2

t3

t4

15

16

Notify
evt2

Notify
evtl

20 30 40 50 60 70 90 100 120

Figure 5.2: Simulation result of the system specification model

5.3 System Architecture Model

During architecture refinement, the system specification model is partitioned into

different functional modules and each module is mapped onto a selected processing

elements. Additionally, the ERTOS-SS DRTOS refinement methodology requires the task

allocation and load balancing to be fulfilled in architecture refinement process. In this

example, all six leaf behaviors in the system specification model are partitioned into two

composite behaviors: task_setl and task_set2. Two processing elements, a

Motorola DSP 56600 and a Motorola Coldfire processor, were selected and named as

www.manaraa.com

65

PE1 and PE2 respectively. Behavior task_setl with three concurrent child behaviors

tl, t2, and t3, is mapped onto PE1. Behavior task_set2 with three concurrent child

behaviors t4, t5, and t6, is running on PE2. The SpecC-based events used to manage

task dependencies are encapsulated into SpecC channels. Figure 5.3 shows the system

architecture model generated by architecture refinement.

PE1 PE2

task_setl

tl <
t2

t3 < evt2

evtl >
task_set2

— t5

A

>

t6

t4

Figure 5.3: Hierarchy of the system architecture model

The simulation result of the system architecture model is shown in Figure 5.4. As

we can see, task execution results are similar to those in the system specification model,

with the only difference is that the task execution is allocated to two PEs. At time 0, tasks

t2 and t3 start their execution on PE1, and tasks t3, t4, and t5 start to execute on

PE1. Task tl is waiting for event evt2. At time 20, task t4 finishes its first execution

block on PE2 and starts to wait for event evtl. At time 50, task t3 finishes its first

execution block on PE1, notifies event evt2, and starts its second execution block. At

the same time, task t4 can start its second execution block on PE2. At time 70, task t5

finishes its first execution block on PE2, notifies event evtl, and starts its second

execution block. At the same time, task tl can start its execution on PE1. From the

analysis of the simulation result we can get the same conclusion: because task scheduling

is not added into system model, concurrent leaf behaviors can be executed truly in

parallel.

www.manaraa.com

66

Notify
evt2

Notify
evtl

ti

t2

t3

t4

t5

16

• •

PE1

PE2

20 30 40 50 60 70 90 100 120

Figure 5.4: Simulation result of the system architecture model

5.4 System Scheduled Model with the RTOS Model

To compare the simulation results of the ERTOS-SS DRTOS model with the

SpecC RTOS model, the next step in this case study is to add RTOS model via OS

refinement and get the simulation result of the system scheduled model with the RTOS

model.

The time_wait call is used inside each basic block of leaf behaviors to model

the execution delay of the tasks. The priority of each task is specified inside its

os_task_create method. The RTOS par_start and par_end system calls are

used in composite behaviors task_setl and task_set2 to fork and join the child

tasks in the execution of the parent task. The SpecC events evtl and evt2 used in the

system architecture model are replaced by RTOS-based events. All SpecC wait and

notify statements are replaced with RTOS event_wait and event_notify calls.

In the first simulation in this step, we use the same task allocation decision as in

the system architecture model. On processor PE1, the priorities of task tl, t2 and t3

are 1, 2, and 3 with tl having the highest priority and t3 having the lowest priority. On

processor PE2, the priorities of task t4, t5 and t6 are specified as 1, 2, and 3 with t4

www.manaraa.com

67

having the highest priority and t6 having the lowest priority.

However, deadlock is occurred during the simulation. After analysis we find out

that the reason of deadlock is because that the RTOS model only provides scheduling and

synchronization inside each PE, but it cannot manage global scheduling and

synchronization among different PEs. Thus, events can get lost so specifically since the

RTOS model will change the order of task execution, a task may start to wait for an event

on a PE which is already released by another task on a different PE. For example, if task

to on PEO notifies the event evtO at time 10 and task tl starts to wait for event evtO

on PE1 at time 20, event evtO is lost and deadlock is occurred.

In the second simulation, another task allocation decision is used: tasks tl, t2,

and t5 are allocated to PE1, tasks t3, t4, and t6 are allocated to PE2. Thus, there is

no event exchange between two different PEs. On processor PE1, the priorities of task

tl, t2 and t5 are 1,2, and 3 with tl having the highest priority and t5 having the

lowest priority. On processor PE2, the priorities of task t3, t4 and t6 are specified as 3,

2, and 1 with t6 having the highest priority and t3 having the lowest priority. The

system scheduled model with insertion of the RTOS model is shown in Figure 5.5.

PE1 PE2

task setl

tl

t5

R
T
O
S

V

task set2

Figure 5.5: Hierarchy of the system scheduled model with the RTOS model

After insertion of RTOS channel in each PE, task management and scheduling are

implemented using system calls of the RTOS channel. The priority-based scheduling

algorithm is used in this example. Figure 5.6 shows the simulation results of task

www.manaraa.com

68

execution with the insertion of the RTOS channels. As we can see, tasks are executed on

each PE in an interleaved way. On PE1, task tl has highest priority and should be

executed first. But it needs to wait for event evtl. Thus, at time 0, the second highest

priority task t2 starts its execution. At time 70, task t2 finishes its execution. Since task

tl is still waiting for event evtl, task t5 starts its execution. At time 140, task t5

finishes its first execution block and notifies event evtl. Then task preemption happens.

Task execution of task t5 is suspended and task tl starts its execution. At time 190, task

tl finishes its execution and task t5 starts its second execution block. At time 220, task

tl finishes its execution. On PE2, task t6 has highest priority and starts its execution at

time 0. At time 50, task t6 finishes its execution and the second highest priority task t4

starts its execution. At time 70, task t4 finishes its first execution block and starts to wait

for event evt2. Then task preemption happens. Task execution of task t4 is suspended

and task t3 starts its execution. At time 120, task t3 finishes its first execution block

and notifies event evt2. Then task preemption happens again. Task execution of task t3

is suspended and task t4 starts its second execution block. At time 140, task t4 finishes

its execution and task t3 starts its second execution block. At time 150, task t3 finishes

its execution.

Notify Notify
evt2 evtl

30 40 50 120 140150160

Figure 5.6: Simulation results of the system scheduled model with the RTOS model

www.manaraa.com

69

5.5 System Scheduled Model with the ERTOS-SS DRTOS

Model

The final step in this example is to add the ERTOS-SS DRTOS model into the

system architecture model to provide mechanisms for multiprocessor task scheduling and

manage dependencies among tasks located on different processing elements.

Recall from section 4.4.2 that the ERTOS-SS DRTOS refinement requires an

additional processing element to which the DRTOS synchronizer behavior will be

mapped. In this example, a standard hardware element is selected and named as OS_PE.

The DRTOS extension behaviors DRTOS_SYNC and DRTOS_SCHD are added into

system model and mapped onto OS_PE during the ERTOS-SS DRTOS refinement

process.

Following the architecture partitioning phase of the ERTOS-SS DRTOS

refinement, the next step is to add a set of semaphores to manage external task

dependencies in the system. Two semaphores are added in this example: semaphore

semal is used to handle dependency between task tl and task 15, semaphore sema2 is

used to handle dependency between task t3 and task t4. The semaphore status table is

used to save semaphore status during system execution. Additionally, task location

information is saved in the semaphore status table after architecture refinement. The

initial semaphore status table for task set in this example is shown in table 5.2. During

simulation, the DRTOS synchronizer and global scheduler behaviors can manage

external task dependencies by accessing information in the semaphore status table.

Table 5.2: Semaphore status table

Semaphores semal sema2

Current Status locking locking

Waiting List Task ID (empty) (empty)

Locking List Task ID i n i t i n i t

Task Location

Information

Task ID tl t3 Task Location

Information PE ID PE1 PE1

www.manaraa.com

70

Task ID t5 t4

PE ID PE2 PE2

The next step is to add the synchronization channel MSG_IO into each tasks and

the DRTOS synchronizer behavior. Two interfaces of the MSG_IO channel provide

capability for exchange of semaphore-related messages. The modified code of task tl

that includes the interfaces of the MSG_IO channel is shown in Figure 5.7.

//data type declarations

typedef structure
{

MSG_Type msg_type;
int task_id;
int sema_id;

} MSG_Data_Struct;

//interface declarations

interface MSG_SEND;
interface MSG_RECV;

behavior tl(OSAPI os, MSG_IO msg)
{

int tid;
MSG_Data_Struct msg_data;

void os_task_create(void)
{

tid = os.task_create("tl", APERIODIC, 0, 500);
}
void main(void)
{

os.task_activate(tid);
msg_data.msg_type = MSG_REQUEST; // request sema
msg_data.task_id =1; // task ID is tl
msg_data.sema_id =1; // sema ID is semal

// code block 1
os.time_wait(50);

// request semi
msg.MSG_SEND(msg_data);

// code block 2
os.time_wait(10);

os.task_terminate();
}

};

www.manaraa.com

71

Figure 5.7: Updated SpecC code of task tl

The finished system scheduled model with insertion of the ERTOS-SS DRTOS

model is shown in Figure 5.8.

OS PE

MSG 10

PE1

DRTOS_ SERV

DRTOS _SCHD

DRTOS _SYNC

task setl

MSG 10

PE2

task set2

Figure 5.8: Hierarchy of the system scheduled model with the ERTOS-SS DRTOS model

Figure 5.9 shows the task execution results after the insertion of the ERTOS-SS

DRTOS model. With the services of task scheduling and synchronization provided by the

ERTOS-SS DRTOS model, task execution on each processor is serialized in an

interleaved way based on the scheduling algorithms and task dependencies. In this

example, a priority based scheduling algorithm is used. At time 0, all six tasks are ready

to be executed. On processor PE1, task tl has the highest priority and should be

executed first. But task tl is waiting for semi and its execution is suspended. Thus, the

task with the second highest priority t2 will be executed first. On processor PE2, task

t4 has the highest priority and will be executed first. At time 20, task t4 on processor

PE2 finishes its first execution block and will wait for sem2 to start its second execution

www.manaraa.com

72

block. Therefore, task preemption happens and task t5 which has the second highest

priority will start to execute on processor PE2. At time 70, task t2 has finished its two

execution blocks on processor PE1. Since task tl is still waiting for semi, task t3 will

start to execute on processor PE1. At time 90, task t5 has finished its first execution

blocks so it releases semi. Since task t4 is still waiting for sem2, task t5 will continue

executing its second execution block. On processor PE1, since semi has been released,

task tl will change its status from "suspended" to "ready". Recall that the task

preemption can only happen at the boundary of the basic execution block. Since at that

time task t3 is running its first execution block, it will keep executing to time 120. At

time 120, task t3 finishes its first execution block and releases sem2. Then task

preemption happens and task tl begins its execution on processor PE1. On processor

PE2, task t5 finishes its second execution block. Since sem2 has been released, t4 will

begin to execute its second execution block. At time 140, task t4 finishes execution and

task t6 starts execution. At time 170, task tl finishes execution and task t3 starts its

second execution block. At time 180, task t3 finishes execution on processor PE1 and at

time 190 task t6 finishes execution on processor PE2.

A
ti

t2 < ' >

t3

t4 "

l5 ..--14

« H-

20 30

Figure 5.9: Simulation results of system scheduled model with the ERTOS-SS DRTOS

model

Release Release
Semi sem2

• I »

- * i

4
4—4_

PEl

PE2

•4—•

70 90 120 140 170 180 190

www.manaraa.com

73

5.6 Summary of Case Study

The result of this case study shows that in the system specification and

architecture models, no task scheduling and synchronization is added. All concurrent

tasks can be executed truly in parallel. At any point of time, it is possible that there are

more than one tasks are being executed, which is not supported in any OS or real

embedded system implementation. Thus, the system specification and architecture model

cannot provide ability for modeling OS in system level design.

The SpecC RTOS model can provide basic RTOS services into system model,

such as task management, event handling, etc. The insertion of the RTOS model can

assistant designers in simulating runtime RTOS behavior during system level synthesis.

However, the SpecC RTOS model cannot provide management for global scheduling and

synchronization. It lacks support for modeling DRTOS in multiprocessor environment.

The ERTOS-SS DRTOS model is an extension of the SpecC RTOS model with a

global synchronizer and a global scheduler. The ERTOS-SS DRTOS model can be

inserted into system architecture model for efficient evaluation of multiprocessor task

scheduling and synchronization implementation.

www.manaraa.com

74

6. RELATED WORK

In this chapter, an overview of related research work on system level design

methodologies for multiprocessor embedded systems or Multiprocessor System-on-Chip

(MPSoC) is presented.

In [19], Reyes et al. introduced a tool called CASSE, what stands for CAmellia

System-on-chip Simulation Environment. CASSE is a fast, flexible, and modular

SystemC-based simulation environment which aims to be useful for design-space

exploration and system-level design at different levels of abstraction. CASSE provides

fast simulations and easy architectural modeling by using transaction-level modeling

techniques. Moreover, CASSE provides a seamless KPN-derived protocol refinement to

cover from application to system implementation. CASSE is being used in the

CAMELLIA project, which is focuses on the mapping of innovative smart imaging

applications onto an existing video encoding architecture.

The Colif project is presented by Cesario et al. in [18]. The main goal of Colif

project is to provide a design representation that is able to model on-chip communication

at different levels of abstraction while clearly separating component behavior from the

communication infrastructure. Colif is an object-oriented intermediate model that

supports multiple communication models at multiple levels of abstraction. Inside Colif

model, the levels of abstraction for communication are classified into four categories:

service level, message level, driver level, and register transfer (RT) level, with service

level being the highest level of abstraction and RT-level being the lowest level of

abstraction. The modeling and refinement methodology for using Colif to design

communication model at different levels of abstraction are also presented in [18].

Currently, the Colif model is used to build a design flow for Application-Specific

Multiprocessor SoC Architectures (ASMSA), and for mixed-level executable model

generation.

Another system-level processor/communication co-exploration methodology for

www.manaraa.com

75

multiprocessor System-on-Chip platforms is presented in [20]. In this co-exploration

methodology, the architecture description language (ADL) LISA is used for the

system-level description of processor architectures, and SystemC based CA transaction

level modeling (TLM) captures the communication architecture and further peripheral

devices. The major contribution of this methodology is to provide a retargetable

integration of arbitrary LISA-based processor models with SystemC-based

communication platform models, as well as a joint top-down refinement and an iterative

profiling driven optimization of heterogeneous multiprocessor SoCs.

Other related research projects includes [21], [22], [23], and [24], presented

different system level design methodologies for modeling multiprocessor system MPSoC.

More generic information about metrics of MPSoC and the future of MPSoC can be

found in [25] and [26].

The ERTOS-SS DRTOS modeling and refinement methodology introduced in this

thesis is differentiated from other work in that it provides a DRTOS model on top of

existing SpecC system level design language and it can be integrated into the existing

system level synthesis flow with a minimal effort.

www.manaraa.com

76

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

System level design is one of the main technologies used in today's embedded

computing system design and development. The main purpose of system level design is

to assist designers in evaluating and optimizing systems early in design exploration. Due

to the use of multiple processors in today's complex embedded systems, there is a need

to develop a distributed real-time operating system modeling mechanism as part of

system level design methodology.

In this thesis, the ERTOS-SS DRTOS modeling and refinement methodology

based on SpecC system level design language is presented. The ERTOS-SS DRTOS

model can provide the basic functionalities of DRTOS implementation such as

multiprocessor task scheduling, inter-processor communication, distributed

synchronization and mutual extension, etc. Refinement rules for inserting the ERTOS-SS

DRTOS model into existing system level design flow have also been presented. These

refinement rules were applied to an example task set to demonstrate the steps of the

ERTOS-SS DRTOS refinement process. In summary, the ERTOS-SS DRTOS modeling

and refinement methodology is mainly focused on simulating system runtime behavior at

the higher levels of abstraction in order to allow designers to validate system

functionality, evaluate system performance, and modify design strategies before any

implementation has been done.

7.2 Future Work

Based on observations and experience gained in performing this project, several

potentially fruitful possibilities for future work may be summarized as follows:

i. Our current DRTOS modeling and refinement methodology is suited for

www.manaraa.com

77

offline multiprocessor task scheduling algorithms in which the task allocation

decision is made before runtime. Since dynamic task allocation and load

balancing are the critical components in many online multiprocessor task

scheduling algorithms, one possible future topic could be to add support of

online scheduling with dynamic mapping system behavior onto different

components.

Hardware reconfiguration operating systems [27] [28] are widely used in

today's embedded systems to dynamically schedule hardware tasks on custom

hardware processing elements such as ASICs and FPGAs. Modeling and

refinement methodology for hardware reconfiguration OS is required to

reflect its abstract behavior in system level design. Therefore, the extension of

our DRTOS modeling and refinement with the support of both conventional

OS and hardware reconfiguration OS should be an interesting topic.

The SCE environment can provide convenient tools and options for automatic

single RTOS modeling and refinement during system level synthesis.

Currently the DRTOS modeling and refinement is manually performed by

system designers. One area of future work could lie in developing tools and

options for assisting automatic DRTOS modeling and refinement design flows

in the SCE environment. The automation of this process would greatly

increase the efficiency for system level designs of multiprocessor embedded

systems with DRTOS.

Compared to SpecC, the SystemC language has greater industry support and

is more widely used by many major vendors. Recently, a great deal of

research work has been focusing on developing a modeling framework based

on SystemC to support the modeling of multiprocessor-based RTOS s and to

provides system designers with a user-friendly and efficient modeling and

simulation environment [16]. But to our knowledge, the lack of ability to

support the DRTOS modeling on top of the SystemC language and to

integrate the DRTOS refinement into the existing SystemC design flow still

www.manaraa.com

78

need to be addressed. Thus, our DRTOS modeling and refinement

methodology could be added into the SystemC language as a new modeling

feature, as in SpecC. More details about SystemC language can be found in

[29] and [30].

www.manaraa.com

79

BIBLIOGRAPHY

[1] Robert Dale Walstrom, "System Level Design Refinement Using SystemC", Masters'

thesis, Department of Electrical and Computer Engineering, Iowa State University,

2005.

[2] Haobo Yu and Daniel D. Gajski, "RTOS Modeling in System Level Synthesis",

CECS Technical Report 02-25, Center for Embedded Computer Systems, University

of California, Irvine, August 14, 2002.

[3] Haobo Yu, Andreas Gerstlauer, and Daniel Gajski, "RTOS Scheduling in Transaction

Level Models", CECS Technical Report 03-12, Center for Embedded Computer

Systems, University of California, Irvine, March 20, 2003.

[4] Daniel D. Gajski, Jianwen Zhu, Rainer Dômer, Andreas Gerstlauer, Shuqing Zhao,

"SpecC: Specification Language and Methodology", Kluwer Academic Publishers,

2000.

[5] F. Panzieri and R. Davoli, "Real Time Systems: A tutorial", Technical Report

UBLCS-93-22, Laboratory for Computer Science, University of Bologna, Italy,

October 1993.

[6] "VxWorks Programmer's Guide", Wind River Systems, Inc., available online at:

http://www.windriver.com.

[7] M Singhal and N. Shivaratri, "Advanced Concepts in Operating Systems", McGraw

Hill, 2001.

[8] Mikael Àkerholm and Tobias Samuelsson, "Design and Benchmarking of Real-Time

Multiprocessor Operating System Kernels", Masters' thesis, Department of Computer

Science and Engineering, Mâlardalen University, June 2002.

[9] C. Siva Ram Murthy and G. Manimaran, "Resource Management in Real-Time

Systems and Networks", the MIT Press, 2001.

[10] Andreas Gerstlauer, "SpecC Modeling Guidelines", CECS Technical Report 02-16,

Center for Embedded Computer Systems, University of California, Irvine, April 12,

http://www.windriver.com

www.manaraa.com

80

2002.

[11]Thorsten Grôtker, Stan Liao, Grant Martin, and Stuart Swan, "System Design with

SystemC", Kluwer Academic Publishers, 2002.

[12]Lukai Cai, Shireesh Verma, and Daniel D. Gejski, "Comparison of SpecC and

SystemC Languages for System Design", CECS Technical Report 03-11, Center for

Embedded Computer Systems, University of California, Irvine, May 15, 2003.

[13]Rainer Dômer, Andreas Gerstlauer, and Daniel Gajski, "SpecC Language Reference

Manual", SpecC Technology Open Consortium, December 12, 2002, available online

at: http://www.specc.org.

[14] Rainer Dômer, "System-level Modeling and Design with the SpecC Language",

doctoral dissertation, Department of Computer Science, University of Dortmund,

Germany, 2000.

[15]Samar Abdi, Junyu Peng, Haobo Yu, Dongwan Shin, Andreas Gerstlauer, Rainer

Doemer, and Daniel Gajski, "System-on-Chip Environment SCE Version 2.2.0 Beta

Tutorial", Center for Embedded Computer Systems, University of California, Irvine,

July 23, 2003.

[16] Jan Mads en, Kashif Virk, and Mercury Gonzales, "Abstract RTOS Modeling for

Multiprocessor System-on-Chip", in proceedings of 2003 International Symposium

on System-on-Chip, pages 147-150, November 2003.

[17] J. Sun and J. Liu, "Synchronization Protocols in Distributed Real-Time Systems", in

proceedings of the 16th International Conference on Distributed Computing Systems,

pages 38-45, May 1996.

[18]W.O. Cesario, G Nicolescu, L. Gauthier, D. Lyonnard, and A.A. Jerraya, "Colif: A

Multilevel Design Representation for Application-Specific Multiprocessor

System-on-Chip Design", in the 12th International Workshop on Rapid System

Prototyping, pages 110-115, June 2001.

[19] V. Reyes, T. Bautista, G. Marrero, P. P. Carballo, and W. Kruijtzer, "CASSE: A

System-Level Modeling and Design-Space Exploration Tool for Multiprocessor

Systems-on-Chip", in Euromicro Symposium on Digital System Design, pages

http://www.specc.org

www.manaraa.com

81

476-483, September 2004.

[20] A. Wieferink, M. Doerper, R. Leupers, G Ascheid, H. Meyr, T. Kogel, G Braun, and

A. Nohl, "System Level Processor/Communication Co-exploration Methodology for

Multiprocessor System-on-Chip Platforms", IEE Proceedings-Computers and Digital

Techniques, volume 152, issue 1, pages 3-11, January 2005.

[21]Kashif Virk and Jan Madsen, "A System-Level Multiprocessor System-on-Chip

Modeling Framework", in proceedings of 2004 International Symposium on

System-on-Chip, pages 81-84, November 2004.

[22] WO Cesario, D. Lyonnard, G Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya, L.

Gauthier, and M Diaz-Nava, "Multiprocessor SoC Platforms: A Component-Based

Design Approach", in IEEE Design & Test of Computers, December 2002.

[23] T. Kogel, A. Wieferink, R. Leupers, G Ascheid, H. Meyr, D. Bussaglia, and M

Ariyamparambath, "Virtual Architecture Mapping: A SystemC based Methodology

for Architectural Exploration of System-on-Chip", in International Workshop on

Systems, Architecture, Modeling and Simulation, Samos, Greece, July 2003.

[24] S. Mahadevan, M Storgaard, J. Madsen, and K. Virk, "ARTS: A System-Level

Framework for Modeling MPSoC Components and Analysis of Their Causality", in

the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, pages 480-483, September 2005.

[25] M. Issam, G Guy, A. Mohamed, P.J. Luc, "Metrics for Multiprocessor System on

Chip", in the 16th International Conference on Microelectronics, pages 787-791,

December 2004.

[26] W. Wolf, "The Future of Multiprocessor Systems-on-Chip", in proceedings of the

41st Design Automation Conference, pages 681-685, June 2004.

[27] C. Steiger, H. Walder, and M Platzner, "Operating Systems for Reconfigurable

Embedded Platforms: Online Scheduling of Real-Time Tasks", IEEE Transactions on

Computers, volume 53, issue 11, pages 1393-1407, November 2004.

[28] C. Steiger, H. Walder, M Platzner, and L. Thiele, "Online Scheduling and Placement

of Real-Time Tasks to Partially Reconfigurable Devices", in proceedings of the 24th

www.manaraa.com

82

IEEE International Real-Time Systems Symposium (RTSS'03), pages 224-235,

December 2003.

[29] "SystemC Version 2.0 User's Guide", updated for SystemC 2.0.1, available online

at: http://www.système.org.

[30] "Functional Specification for SystemC 2.0", updated for SystemC 2.0.1, version

2.0-Q, April 5, 2002.

	2006
	Distributed real-time operating system (DRTOS) modeling in SpecC
	Ziyu Zhang
	Recommended Citation

	thesis_ZiyuZhang_no_signature_page

